Cisco utbildning

Insoft Services är en av få utbildningsleverantörer inom EMEAR som erbjuder hela utbudet av Cisco-certifiering och specialiserad teknikutbildning.

Läs mer

Cisco-certifieringar

Upplev en blandad inlärningsmetod som kombinerar det bästa av instruktörsledd utbildning och e-lärande i egen takt för att hjälpa dig att förbereda dig för ditt certifieringsprov.

Läs mer

Cisco Learning Credits

Cisco Learning Credits (CLC) är förbetalda utbildningskuponger som löses in direkt med Cisco och som gör det enklare att planera för din framgång när du köper Ciscos produkter och tjänster.

Läs mer

Cisco Fortbildning

Ciscos fortbildningsprogram erbjuder alla aktiva certifikatinnehavare flexibla alternativ för att omcertifiera genom att slutföra en mängd olika kvalificerade utbildningsartiklar.

Läs mer

Cisco Digital Learning

Certifierade medarbetare är VÄRDERADE tillgångar. Utforska Ciscos officiella digitala utbildningsbibliotek för att utbilda dig själv genom inspelade sessioner.

Läs mer

Partner för affärsaktivering

Cisco Business Enablement Partner Program fokuserar på att vässa affärskunskaperna hos Cisco Channel Partners och kunder.

Läs mer

Cisco Kurskatalog

Läs mer

Fortinet-certifieringar

Fortinet Network Security Expert (NSE) -programmet är ett utbildnings- och certifieringsprogram på åtta nivåer för att lära ingenjörer om deras nätverkssäkerhet för Fortinet FW-färdigheter och erfarenheter.

Tekniska utbildningar

Tekniska utbildningar

Insoft är erkänt som Fortinet Authorized Training Center på utvalda platser i EMEA.

Läs mer

Fortinet Kurskatalog

Utforska ett brett utbud av Fortinet-scheman i olika länder samt onlinekurser.

Läs mer

ATC-status

Kolla in vår ATC-status i utvalda länder i Europa.

Läs mer

Fortinet Professionella tjänster

Globalt erkända team av certifierade experter hjälper dig att göra en smidigare övergång med våra fördefinierade konsult-, installations- och migreringspaket för ett brett utbud av Fortinet-produkter.

Läs mer

Microsoft-utbildning

Insoft Services tillhandahåller Microsoft-utbildning i EMEAR. Vi erbjuder Microsofts tekniska utbildnings- och certifieringskurser som leds av instruktörer i världsklass.

Tekniska utbildningar

Extreme-utbildning

Lär dig exceptionella kunskaper och färdigheter i Extreme Networks.

Technische Kurse

Tekniske-certifieringar

Vi tillhandahåller omfattande läroplan för tekniska kompetensfärdigheter på certifieringsprestationen.

Läs mer

Extreme Kurskatalog

Hier finden Sie alle Extreme Networks online und den von Lehrern geleiteten Kalender für den Klassenraum.

Läs mer

ATP-ackreditering

Som auktoriserad utbildningspartner (ATP) säkerställer Insoft Services att du får de högsta tillgängliga utbildningsstandarderna.

Läs mer

Konsultpaket

Vi erbjuder innovativt och avancerat stöd för att designa, implementera och optimera IT-lösningar.Vår kundbas inkluderar några av de största telekombolagen globalt.

Lösningar och tjänster

Globalt erkända team av certifierade experter hjälper dig att göra en smidigare övergång med våra fördefinierade konsult-, installations- och migreringspaket för ett brett utbud av Fortinet-produkter.

Om oss

Insoft Tillhandahåller auktoriserade utbildnings- och konsulttjänster för utvalda IP-leverantörer.Lär dig hur vi revolutionerar branschen.

Läs mer
  • +46 8 502 431 88
  • MLOps Engineering on AWS

    Duration
    3 Dagar
    Delivery
    (Online och på plats)
    Price
    Pris på begäran

    This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Explain the benefits of MLOps
    • Compare and contrast DevOps and MLOps
    • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
    • Set up experimentation environments for MLOps with Amazon SageMaker
    • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
    • Describe three options for creating a full CI/CD pipeline in an ML context
    • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
    • Demonstrate how to monitor ML based solutions
    • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

    Day 1

     

    Module 1: Introduction to MLOps

    • Processes
    • People
    • Technology
    • Security and governance
    • MLOps maturity model

    Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

    • Bringing MLOps to experimentation
    • Setting up the ML experimentation environment
    • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
    • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
    • Workbook: Initial MLOps

    Module 3: Repeatable MLOps: Repositories

    • Managing data for MLOps
    • Version control of ML models
    • Code repositories in ML

     

    Module 4: Repeatable MLOps: Orchestration

    • ML pipelines
    • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

     

    Day 2

     

    Module 4: Repeatable MLOps: Orchestration (continued)

    • End-to-end orchestration with AWS Step Functions
    • Hands-On Lab: Automating a Workflow with Step Functions
    • End-to-end orchestration with SageMaker Projects
    • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
    • Using third-party tools for repeatability
    • Demonstration: Exploring Human-in-the-Loop During Inference
    • Governance and security
    • Demonstration: Exploring Security Best Practices for SageMaker
    • Workbook: Repeatable MLOps

    Module 5: Reliable MLOps: Scaling and Testing

    • Scaling and multi-account strategies
    • Testing and traffic-shifting
    • Demonstration: Using SageMaker Inference Recommender
    • Hands-On Lab: Testing Model Variants

     

    Day 3

     

    Module 5: Reliable MLOps: Scaling and Testing (continued)

    • Hands-On Lab: Shifting Traffic
    • Workbook: Multi-account strategies

    Module 6: Reliable MLOps: Monitoring

    • The importance of monitoring in ML
    • Hands-On Lab: Monitoring a Model for Data Drift
    • Operations considerations for model monitoring
    • Remediating problems identified by monitoring ML solutions
    • Workbook: Reliable MLOps
    • Hands-On Lab: Building and Troubleshooting an ML Pipeline

    This course is intended for:

    • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
    • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

    We recommend that attendees of this course have:

    • AWS Technical Essentials (classroom or digital)
    • DevOps Engineering on AWS, or equivalent experience
    • Practical Data Science with Amazon SageMaker, or equivalent experience

    This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Explain the benefits of MLOps
    • Compare and contrast DevOps and MLOps
    • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
    • Set up experimentation environments for MLOps with Amazon SageMaker
    • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
    • Describe three options for creating a full CI/CD pipeline in an ML context
    • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
    • Demonstrate how to monitor ML based solutions
    • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

    Day 1

     

    Module 1: Introduction to MLOps

    • Processes
    • People
    • Technology
    • Security and governance
    • MLOps maturity model

    Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

    • Bringing MLOps to experimentation
    • Setting up the ML experimentation environment
    • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
    • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
    • Workbook: Initial MLOps

    Module 3: Repeatable MLOps: Repositories

    • Managing data for MLOps
    • Version control of ML models
    • Code repositories in ML

     

    Module 4: Repeatable MLOps: Orchestration

    • ML pipelines
    • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

     

    Day 2

     

    Module 4: Repeatable MLOps: Orchestration (continued)

    • End-to-end orchestration with AWS Step Functions
    • Hands-On Lab: Automating a Workflow with Step Functions
    • End-to-end orchestration with SageMaker Projects
    • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
    • Using third-party tools for repeatability
    • Demonstration: Exploring Human-in-the-Loop During Inference
    • Governance and security
    • Demonstration: Exploring Security Best Practices for SageMaker
    • Workbook: Repeatable MLOps

    Module 5: Reliable MLOps: Scaling and Testing

    • Scaling and multi-account strategies
    • Testing and traffic-shifting
    • Demonstration: Using SageMaker Inference Recommender
    • Hands-On Lab: Testing Model Variants

     

    Day 3

     

    Module 5: Reliable MLOps: Scaling and Testing (continued)

    • Hands-On Lab: Shifting Traffic
    • Workbook: Multi-account strategies

    Module 6: Reliable MLOps: Monitoring

    • The importance of monitoring in ML
    • Hands-On Lab: Monitoring a Model for Data Drift
    • Operations considerations for model monitoring
    • Remediating problems identified by monitoring ML solutions
    • Workbook: Reliable MLOps
    • Hands-On Lab: Building and Troubleshooting an ML Pipeline

    This course is intended for:

    • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
    • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

    We recommend that attendees of this course have:

    • AWS Technical Essentials (classroom or digital)
    • DevOps Engineering on AWS, or equivalent experience
    • Practical Data Science with Amazon SageMaker, or equivalent experience
      Datum
      Datum på begäran

    Follow Up Courses

    Filtrera
    • 2 Dagar
      Datum på begäran
      Price on Request
      Book Now
    • 3 Dagar
      Datum på begäran
      Price on Request
      Book Now
    • 3 Dagar
      Datum på begäran
      Price on Request
      Book Now
    • 1 Dag
      Datum på begäran
      Price on Request
      Book Now
    • 1 Dag
      Datum på begäran
      Price on Request
      Book Now
    • 3 Dagar
      Datum på begäran
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.