Cisco-training

Insoft Services is een van de weinige aanbieders van opleidingen in EMEAR tot een volledige reeks van Cisco-certificering en gespecialiseerde technische opleiding aan te bieden.

Lees meer

Cisco-certificering

Ervaar een blended learning-aanpak die het beste van door een instructeur geleide training en e-learning in eigen tempo combineert om u te helpen zich voor te bereiden op uw certificeringsexamen.

Lees meer

Cisco Learning Credits

Cisco Learning Credits (CLCs) zijn prepaid trainingsvouchers die rechtstreeks bij Cisco worden ingewisseld en die het plannen van uw succes eenvoudiger maken bij de aankoop van Cisco-producten en -services.

Lees meer

Cisco Continuing Education

Het Cisco Continuing Education Program biedt alle actieve certificeringshouders flexibele opties om opnieuw te certificeren door een verscheidenheid aan in aanmerking komende trainingsitems te voltooien.

Lees meer

Cisco Digital Learning

Gecertificeerde medewerkers zijn GEWAARDEERDE activa. Verken de officiële Digital Learning Library van Cisco om uzelf te informeren via opgenomen sessies.

Lees meer

Cisco Business Enablement

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Cisco trainingscatalogus

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Fortinet-certificering

Het Fortinet Network Security Expert (NSE) -programma is een training- en certificeringsprogramma op acht niveaus om ingenieurs van hun netwerkbeveiliging te leren voor Fortinet FW-vaardigheden en -ervaring.

Technische trainingen

Fortinet-training

Insoft is erkend als Fortinet Authorized Training Center op geselecteerde locaties in EMEA.

Lees meer

Fortinet trainingscatalogus

Bekijk de volledige Fortinet trainingscatalogus. Het programma omvat een breed scala aan cursussen in eigen tempo en onder leiding van een instructeur.

Lees meer

ATC Status

Bekijk onze ATC-status in geselecteerde landen in Europa.

Lees meer

Fortinet Professionele Services

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Lees meer

Microsoft-training

Insoft Services biedt Microsoft-trainingen in EMEAR. We bieden technische trainingen en certificeringscursussen van Microsoft aan die worden geleid door instructeurs van wereldklasse.

Technische cursussen

Extreme-training

Find all the Extreme Networks online and instructor led class room based calendar here.

Technische cursussen

Technische-certificering

We provide comprehensive curriculum of technical competency skills on the certification accomplishment.

Lees meer

Extreme trainingscatalogus

Leer uitzonderlijke kennis en vaardigheden van Extreme Networks

Lees meer

ATP accreditatie

Als geautoriseerde trainingspartner (ATP) zorgt Insoft Services ervoor dat u de hoogste onderwijsnormen krijgt die beschikbaar zijn.

Lees meer

Services Oplossingen

Wij bieden innovatieve en geavanceerde ondersteuning bij het ontwerpen, implementeren en optimaliseren van IT-oplossingen.Ons klantenbestand omvat enkele van de grootste Telco's ter wereld.

Oplossingen

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Over ons

Insoft biedt geautoriseerde trainings- en consultancydiensten voor geselecteerde IP-leveranciers. Ontdek hoe we een revolutie teweegbrengen in de industrie.

Lees meer
  • +31 71 799 6230
  • You can unsubscribe from these communications at any time. For more information please review our Privacy Policy. By clicking 'Send Message' below, you consent to allow Insoft Services to store and process the personal information submitted above to provide you with the content requested.

    Data Science for Marketing Analytics

    Duration
    3 Dagen
    Delivery
    (Online and onsite)
    Price
    Price Upon Request
    The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments. The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modelling customer product choices. By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.  

    Lesson One: Data Preparation and Cleaning

    • Data Models and Structured Data
    • pandas
    • Data Manipulation

    Lesson Two: Data Exploration and Visualization

    • Identifying the Right Attributes
    • Generating Targeted Insights
    • Visualizing Data

    Lesson Three: Unsupervised Learning: Customer Segmentation

    • Customer Segmentation Methods
    • Similarity and Data Standardization
    • k-means Clustering

    Lesson Four: Choosing the Best Segmentation Approach

    • Choosing the Number of Clusters
    • Different Methods of Clustering
    • Evaluating Clustering

    Lesson Five: Predicting Customer Revenue Using Linear Regression

    • Understanding Regression
    • Feature Engineering for Regression
    • Performing and Interpreting Linear Regression

    Lesson Six: Other Regression Techniques and Tools for Evaluation

    • Evaluating the Accuracy of a Regression Model
    • Using Regularization for Feature Selection
    • Tree-Based Regression Models

    Lesson Seven: Supervised Learning: Predicting Customer Churn

    • Classification Problems
    • Understanding Logistic Regression
    • Creating a Data Science Pipeline

    Lesson Eight: Fine-Tuning Classification Algorithms

    • Support Vector Machine
    • Decision Trees
    • Random Forest
    • Preprocessing Data for Machine Learning Models
    • Model Evaluation
    • Performance Metrics

    Lesson Nine: Modeling Customer Choice

    • Understanding Multiclass Classification
    • Class Imbalanced Data

    Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.

    It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.

     

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Dual Core or better
    • Memory: 4 GB RAM
    • Storage: 10 GB available space

     

    Software:

    You’ll also need the following software installed in advance:

    • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
    • Browser: Google Chrome or Mozilla Firefox
    • Conda
    • Python 3.x
    The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments. The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modelling customer product choices. By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.  

    Lesson One: Data Preparation and Cleaning

    • Data Models and Structured Data
    • pandas
    • Data Manipulation

    Lesson Two: Data Exploration and Visualization

    • Identifying the Right Attributes
    • Generating Targeted Insights
    • Visualizing Data

    Lesson Three: Unsupervised Learning: Customer Segmentation

    • Customer Segmentation Methods
    • Similarity and Data Standardization
    • k-means Clustering

    Lesson Four: Choosing the Best Segmentation Approach

    • Choosing the Number of Clusters
    • Different Methods of Clustering
    • Evaluating Clustering

    Lesson Five: Predicting Customer Revenue Using Linear Regression

    • Understanding Regression
    • Feature Engineering for Regression
    • Performing and Interpreting Linear Regression

    Lesson Six: Other Regression Techniques and Tools for Evaluation

    • Evaluating the Accuracy of a Regression Model
    • Using Regularization for Feature Selection
    • Tree-Based Regression Models

    Lesson Seven: Supervised Learning: Predicting Customer Churn

    • Classification Problems
    • Understanding Logistic Regression
    • Creating a Data Science Pipeline

    Lesson Eight: Fine-Tuning Classification Algorithms

    • Support Vector Machine
    • Decision Trees
    • Random Forest
    • Preprocessing Data for Machine Learning Models
    • Model Evaluation
    • Performance Metrics

    Lesson Nine: Modeling Customer Choice

    • Understanding Multiclass Classification
    • Class Imbalanced Data

    Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.

    It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.

     

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Dual Core or better
    • Memory: 4 GB RAM
    • Storage: 10 GB available space

     

    Software:

    You’ll also need the following software installed in advance:

    • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
    • Browser: Google Chrome or Mozilla Firefox
    • Conda
    • Python 3.x
      Datum op aanvraag

    Follow Up Courses

    Filter
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 5 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 5 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 4 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 5 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 5 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 4 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 2 Dagen
      Datum op aanvraag
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.