Cisco-opplæring

Insoft Services er en av få opplæringsleverandører i EMEAR som tilbyr hele spekteret av Cisco-sertifisering og spesialisert teknologiopplæring.

Les mer

Cisco Sertifisering

Opplev en blandet læringstilnærming som kombinerer det beste av instruktørledet opplæring og e-læring i eget tempo for å hjelpe deg med å forberede deg til sertifiseringseksamen.

Les mer

Cisco Learning Credits

Cisco Learning Credits (CLC) er forhåndsbetalte opplæringskuponger innløst direkte med Cisco som gjør planleggingen for suksessen din enklere når du kjøper Cisco-produkter og -tjenester.

Les mer

Etterutdanning

Cisco Continuing Education Program tilbyr alle aktive sertifiseringsinnehavere fleksible alternativer for å resertifisere ved å fullføre en rekke kvalifiserte opplæringselementer.

Les mer

Cisco Digital Learning

Sertifiserte ansatte er verdsatte eiendeler. Utforsk Ciscos offisielle digitale læringsbibliotek for å utdanne deg gjennom innspilte økter.

Les mer

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på å skjerpe forretningsferdighetene til Cisco Channel Partners og kunder.

Les mer

Cisco opplæringskatalog

Les mer

Fortinet Sertifisering

Fortinet Network Security Expert (NSE)-programmet er et opplærings- og sertifiseringsprogram på åtte nivåer for å lære ingeniører om nettverkssikkerheten for Fortinet FW-ferdigheter og -erfaring.

Tekniske kurs

Fortinet-opplæring

Insoft er anerkjent som Fortinet Autorisert Opplæringssenter på utvalgte steder i EMEA.

Les mer

Fortinet opplæringskatalog

Utforsk et bredt utvalg av Fortinet Schedule på tvers av forskjellige land så vel som online kurs.

Les mer

ATC-status

Sjekk atc-statusen vår på tvers av utvalgte land i Europa.

Les mer

Pakker for Fortinet-tjenester

Insoft Services har utviklet en spesifikk løsning for å effektivisere og forenkle prosessen med å installere eller migrere til Fortinet-produkter.

Les mer

Microsoft-opplæring

Insoft Services gir Microsoft opplæring i EMEAR. Vi tilbyr Microsofts tekniske opplærings- og sertifiseringskurs som ledes av instruktører i verdensklasse.

Tekniske kurs

Extreme-opplæring

Lær eksepsjonell kunnskap og ferdigheter i ekstreme nettverk.

Les mer

Teknisk sertifisering

Vi tilbyr omfattende læreplan over tekniske kompetanseferdigheter om sertifiseringsprestasjonen.

Les mer

Extreme opplæringskatalog

Tekniske kurs

ATP-akkreditering

Som autorisert opplæringspartner (ATP) sørger Insoft Services for at du får de høyeste utdanningsstandardene som er tilgjengelige.

Les mer

Løsninger og tjenester

Vi tilbyr innovativ og avansert støtte for design, implementering og optimalisering av IT-løsninger. Vår kundebase inkluderer noen av de største Telcos globalt.

Les mer

Globalt anerkjent team av sertifiserte eksperter hjelper deg med å gjøre en jevnere overgang med våre forhåndsdefinerte konsulent-, installasjons- og migrasjonspakker for et bredt spekter av Fortinet-produkter.

Om oss

Insoft Tilbyr autoriserte opplærings- og konsulenttjenester for utvalgte IP-leverandører. Finn ut hvordan vi revolusjonerer bransjen.

Les mer
  • +47 23 96 21 03
  • Building Batch Data Analytics Solutions on AWS

    Duration
    1 Dag
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørsel

    In this course, you will learn to build batch data analytics solutions using Amazon EMR, an enterprise-grade Apache Spark and Apache Hadoop managed service. You will learn how Amazon EMR integrates with open-source projects such as Apache Hive, Hue, and HBase, and with AWS services such as AWS Glue and AWS Lake Formation. The course addresses data collection, ingestion, cataloging, storage, and processing components in the context of Spark and Hadoop. You will learn to use EMR Notebooks to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon EMR.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Compare the features and benefits of data warehouses, data lakes, and modern data architectures
    • Design and implement a batch data analytics solution
    • Identify and apply appropriate techniques, including compression, to optimize data storage
    • Select and deploy appropriate options to ingest, transform, and store data
    • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
    • Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
    • Secure data at rest and in transit
    • Monitor analytics workloads to identify and remediate problems
    • Apply cost management best practices

    Module A: Overview of Data Analytics and the Data Pipeline

    • Data analytics use cases
    • Using the data pipeline for analytics

    Module 1: Introduction to Amazon EMR

    • Using Amazon EMR in analytics solutions
    • Amazon EMR cluster architecture
    • Interactive Demo 1: Launching an Amazon EMR cluster
    • Cost management strategies

    Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and

    • Storage optimization with Amazon EMR
    • Data ingestion techniques

    Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR

    • Apache Spark on Amazon EMR use cases
    • Why Apache Spark on Amazon EMR
    • Spark concepts
    • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the

    Spark shell

    • Transformation, processing, and analytics
    • Using notebooks with Amazon EMR
    • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

    Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive

    • Using Amazon EMR with Hive to process batch data
    • Transformation, processing, and analytics
    • Practice Lab 2: Batch data processing using Amazon EMR with Hive
    • Introduction to Apache HBase on Amazon EMR

    Module 5: Serverless Data Processing

    • Serverless data processing, transformation, and analytics
    • Using AWS Glue with Amazon EMR workloads
    • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions

    Module 6: Security and Monitoring of Amazon EMR Clusters

    • Securing EMR clusters
    • Interactive Demo 3: Client-side encryption with EMRFS
    • Monitoring and troubleshooting Amazon EMR clusters
    • Demo: Reviewing Apache Spark cluster

    Module 7: Designing Batch Data Analytics Solutions

    • Batch data analytics use cases
    • Activity: Designing a batch data analytics workflow

    Module B: Developing Modern Data Architectures on AWS

    • Modern data architectures

    This course is intended for:

    • Data platform engineers
    • Architects and operators who build and manage data analytics pipelines

    Students with a minimum one-year experience managing open-source data frameworks such as Apache
    Spark or Apache Hadoop will benefit from this course.

     

    We recommend that attendees of this course have:

    • Completed either AWS Technical Essentials or Architecting on AWS
    • Completed either Building Data Lakes on AWS or Getting Started with AWS Glue

    In this course, you will learn to build batch data analytics solutions using Amazon EMR, an enterprise-grade Apache Spark and Apache Hadoop managed service. You will learn how Amazon EMR integrates with open-source projects such as Apache Hive, Hue, and HBase, and with AWS services such as AWS Glue and AWS Lake Formation. The course addresses data collection, ingestion, cataloging, storage, and processing components in the context of Spark and Hadoop. You will learn to use EMR Notebooks to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon EMR.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Compare the features and benefits of data warehouses, data lakes, and modern data architectures
    • Design and implement a batch data analytics solution
    • Identify and apply appropriate techniques, including compression, to optimize data storage
    • Select and deploy appropriate options to ingest, transform, and store data
    • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
    • Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
    • Secure data at rest and in transit
    • Monitor analytics workloads to identify and remediate problems
    • Apply cost management best practices

    Module A: Overview of Data Analytics and the Data Pipeline

    • Data analytics use cases
    • Using the data pipeline for analytics

    Module 1: Introduction to Amazon EMR

    • Using Amazon EMR in analytics solutions
    • Amazon EMR cluster architecture
    • Interactive Demo 1: Launching an Amazon EMR cluster
    • Cost management strategies

    Module 2: Data Analytics Pipeline Using Amazon EMR: Ingestion and

    • Storage optimization with Amazon EMR
    • Data ingestion techniques

    Module 3: High-Performance Batch Data Analytics Using Apache Spark on Amazon EMR

    • Apache Spark on Amazon EMR use cases
    • Why Apache Spark on Amazon EMR
    • Spark concepts
    • Interactive Demo 2: Connect to an EMR cluster and perform Scala commands using the

    Spark shell

    • Transformation, processing, and analytics
    • Using notebooks with Amazon EMR
    • Practice Lab 1: Low-latency data analytics using Apache Spark on Amazon EMR

    Module 4: Processing and Analyzing Batch Data with Amazon EMR and Apache Hive

    • Using Amazon EMR with Hive to process batch data
    • Transformation, processing, and analytics
    • Practice Lab 2: Batch data processing using Amazon EMR with Hive
    • Introduction to Apache HBase on Amazon EMR

    Module 5: Serverless Data Processing

    • Serverless data processing, transformation, and analytics
    • Using AWS Glue with Amazon EMR workloads
    • Practice Lab 3: Orchestrate data processing in Spark using AWS Step Functions

    Module 6: Security and Monitoring of Amazon EMR Clusters

    • Securing EMR clusters
    • Interactive Demo 3: Client-side encryption with EMRFS
    • Monitoring and troubleshooting Amazon EMR clusters
    • Demo: Reviewing Apache Spark cluster

    Module 7: Designing Batch Data Analytics Solutions

    • Batch data analytics use cases
    • Activity: Designing a batch data analytics workflow

    Module B: Developing Modern Data Architectures on AWS

    • Modern data architectures

    This course is intended for:

    • Data platform engineers
    • Architects and operators who build and manage data analytics pipelines

    Students with a minimum one-year experience managing open-source data frameworks such as Apache
    Spark or Apache Hadoop will benefit from this course.

     

    We recommend that attendees of this course have:

    • Completed either AWS Technical Essentials or Architecting on AWS
    • Completed either Building Data Lakes on AWS or Getting Started with AWS Glue
      Datoer
      Date on Request

    Follow Up Courses

    Filtrer
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.