Cisco-opplæring

Insoft Services er en av få opplæringsleverandører i EMEAR som tilbyr hele spekteret av Cisco-sertifisering og spesialisert teknologiopplæring.

Les mer

Cisco Sertifisering

Opplev en blandet læringstilnærming som kombinerer det beste av instruktørledet opplæring og e-læring i eget tempo for å hjelpe deg med å forberede deg til sertifiseringseksamen.

Les mer

Cisco Learning Credits

Cisco Learning Credits (CLC) er forhåndsbetalte opplæringskuponger innløst direkte med Cisco som gjør planleggingen for suksessen din enklere når du kjøper Cisco-produkter og -tjenester.

Les mer

Etterutdanning

Cisco Continuing Education Program tilbyr alle aktive sertifiseringsinnehavere fleksible alternativer for å resertifisere ved å fullføre en rekke kvalifiserte opplæringselementer.

Les mer

Cisco Digital Learning

Sertifiserte ansatte er verdsatte eiendeler. Utforsk Ciscos offisielle digitale læringsbibliotek for å utdanne deg gjennom innspilte økter.

Les mer

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på å skjerpe forretningsferdighetene til Cisco Channel Partners og kunder.

Les mer

Cisco opplæringskatalog

Les mer

Fortinet Sertifisering

Fortinet Network Security Expert (NSE)-programmet er et opplærings- og sertifiseringsprogram på åtte nivåer for å lære ingeniører om nettverkssikkerheten for Fortinet FW-ferdigheter og -erfaring.

Tekniske kurs

Fortinet-opplæring

Insoft er anerkjent som Fortinet Autorisert Opplæringssenter på utvalgte steder i EMEA.

Les mer

Fortinet opplæringskatalog

Utforsk et bredt utvalg av Fortinet Schedule på tvers av forskjellige land så vel som online kurs.

Les mer

ATC-status

Sjekk atc-statusen vår på tvers av utvalgte land i Europa.

Les mer

Pakker for Fortinet-tjenester

Insoft Services har utviklet en spesifikk løsning for å effektivisere og forenkle prosessen med å installere eller migrere til Fortinet-produkter.

Les mer

Microsoft-opplæring

Insoft Services gir Microsoft opplæring i EMEAR. Vi tilbyr Microsofts tekniske opplærings- og sertifiseringskurs som ledes av instruktører i verdensklasse.

Tekniske kurs

Extreme-opplæring

Lær eksepsjonell kunnskap og ferdigheter i ekstreme nettverk.

Les mer

Teknisk sertifisering

Vi tilbyr omfattende læreplan over tekniske kompetanseferdigheter om sertifiseringsprestasjonen.

Les mer

Extreme opplæringskatalog

Tekniske kurs

ATP-akkreditering

Som autorisert opplæringspartner (ATP) sørger Insoft Services for at du får de høyeste utdanningsstandardene som er tilgjengelige.

Les mer

Løsninger og tjenester

Vi tilbyr innovativ og avansert støtte for design, implementering og optimalisering av IT-løsninger. Vår kundebase inkluderer noen av de største Telcos globalt.

Les mer

Globalt anerkjent team av sertifiserte eksperter hjelper deg med å gjøre en jevnere overgang med våre forhåndsdefinerte konsulent-, installasjons- og migrasjonspakker for et bredt spekter av Fortinet-produkter.

Om oss

Insoft Tilbyr autoriserte opplærings- og konsulenttjenester for utvalgte IP-leverandører. Finn ut hvordan vi revolusjonerer bransjen.

Les mer
  • +47 23 96 21 03
  • Practical Data Science with Amazon SageMaker

    Duration
    1 Dag
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørsel

    Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Discuss the benefits of different types of machine learning for solving business problems
    • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
    • Explain how data scientists use AWS tools and ML to solve a common business problem
    • Summarize the steps a data scientist takes to prepare data
    • Summarize the steps a data scientist takes to train ML models
    • Summarize the steps a data scientist takes to evaluate and tune ML models
    • Summarize the steps to deploy a model to an endpoint and generate predictions
    • Describe the challenges for operationalizing ML models
    • Match AWS tools with their ML function

    Module 1: Introduction to Machine Learning

    • Benefits of machine learning (ML)
    • Types of ML approaches
    • Framing the business problem
    • Prediction quality
    • Processes, roles, and responsibilities for ML projects

    Module 2: Preparing a Dataset

    • Data analysis and preparation
    • Data preparation tools
    • Demonstration: Review Amazon SageMaker Studio and Notebooks
    • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

    Module 3: Training a Model

    • Steps to train a model
    • Choose an algorithm
    • Train the model in Amazon SageMaker
    • Hands-On Lab: Training a Model with Amazon SageMaker
    • Amazon CodeWhisperer
    • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

    Module 4: Evaluating and Tuning a Model

    • Model evaluation
    • Model tuning and hyperparameter optimization
    • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

    Module 5: Deploying a Model

    • Model deployment
    • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

    Module 6: Operational Challenges

    • Responsible ML
    • ML team and MLOps
    • Automation
    • Monitoring
    • Updating models (model testing and deployment)

    Module 7: Other Model-Building Tools

    • Different tools for different skills and business needs
    • No-code ML with Amazon SageMaker Canvas
    • Demonstration: Overview of Amazon SageMaker Canvas
    • Amazon SageMaker Studio Lab
    • Demonstration: Overview of SageMaker Studio Lab
    • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

    This course is intended for:

    • Development Operations (DevOps) engineers
    • Application developers

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Entry-level knowledge of Python programming
    • Entry-level knowledge of statistics

    Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Discuss the benefits of different types of machine learning for solving business problems
    • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
    • Explain how data scientists use AWS tools and ML to solve a common business problem
    • Summarize the steps a data scientist takes to prepare data
    • Summarize the steps a data scientist takes to train ML models
    • Summarize the steps a data scientist takes to evaluate and tune ML models
    • Summarize the steps to deploy a model to an endpoint and generate predictions
    • Describe the challenges for operationalizing ML models
    • Match AWS tools with their ML function

    Module 1: Introduction to Machine Learning

    • Benefits of machine learning (ML)
    • Types of ML approaches
    • Framing the business problem
    • Prediction quality
    • Processes, roles, and responsibilities for ML projects

    Module 2: Preparing a Dataset

    • Data analysis and preparation
    • Data preparation tools
    • Demonstration: Review Amazon SageMaker Studio and Notebooks
    • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

    Module 3: Training a Model

    • Steps to train a model
    • Choose an algorithm
    • Train the model in Amazon SageMaker
    • Hands-On Lab: Training a Model with Amazon SageMaker
    • Amazon CodeWhisperer
    • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

    Module 4: Evaluating and Tuning a Model

    • Model evaluation
    • Model tuning and hyperparameter optimization
    • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

    Module 5: Deploying a Model

    • Model deployment
    • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

    Module 6: Operational Challenges

    • Responsible ML
    • ML team and MLOps
    • Automation
    • Monitoring
    • Updating models (model testing and deployment)

    Module 7: Other Model-Building Tools

    • Different tools for different skills and business needs
    • No-code ML with Amazon SageMaker Canvas
    • Demonstration: Overview of Amazon SageMaker Canvas
    • Amazon SageMaker Studio Lab
    • Demonstration: Overview of SageMaker Studio Lab
    • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

    This course is intended for:

    • Development Operations (DevOps) engineers
    • Application developers

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Entry-level knowledge of Python programming
    • Entry-level knowledge of statistics
      Datoer
      Date on Request

    Follow Up Courses

    Filtrer
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.