Cisco træning

Insoft Services er en af de få uddannelsesudbydere i EMEAR, der tilbyder hele spektret af Cisco-certificering og specialiseret teknologiuddannelse.

Lær hvordan

Cisco-certificeringer

Oplev en blandet læringsmetode, der kombinerer det bedste fra instruktørstyret træning og e-læring i eget tempo for at hjælpe dig med at forberede dig til din certificeringseksamen.

Lær hvordan

Cisco Learning Credits

Cisco Learning Credits (CLCs) er forudbetalte træningskuponer, der indløses direkte med Cisco, og som gør det nemmere at planlægge din succes, når du køber Cisco-produkter og -tjenester.

Lær hvordan

Cisco Efteruddannelse

Cisco Continuing Education Program tilbyder alle aktive certificeringsindehavere fleksible muligheder for at gencertificere ved at gennemføre en række kvalificerede træningselementer.

Lær hvordan

Cisco Digital Learning

Certificerede medarbejdere er VÆRDSATTE aktiver. Udforsk Ciscos officielle digitale læringsbibliotek for at uddanne dig selv gennem optagede sessioner.

Lær hvordan

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på at skærpe Cisco Channel Partners og kunders forretningsmæssige færdigheder.

Lær hvordan

Cisco kursuskatalog

Lær hvordan

Fortinet-certificeringer

Fortinet Network Security Expert (NSE) -programmet er et otte-niveau uddannelses- og certificeringsprogram for at undervise ingeniører i deres netværkssikkerhed for Fortinet FW-færdigheder og erfaring.

Lær hvordan

Fortinet træning

Insoft er anerkendt som Autoriseret Fortinet Training Center på udvalgte steder på tværs af EMEA.

Tekniske kurser

Fortinet kursuskatalog

Udforsk hele Fortinet-træningskataloget. Programmet omfatter en bred vifte af selvstændige og instruktørledede kurser.

Lær hvordan

ATC-status

Tjek vores ATC-status på tværs af udvalgte lande i Europa.

Lær hvordan

Fortinet Professionelle Services

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Lær hvordan

Microsoft træning

Insoft Services tilbyder Microsoft-undervisning i EMEAR. Vi tilbyder Microsoft tekniske kurser og certificeringskurser, der ledes af instruktører i verdensklasse.

Tekniske kurser

Extreme træning

Find all the Extreme Networks online and instructor led class room based calendar here.

Tekniske kurser

Tekniske certificeringer

Vi leverer omfattende læseplan for tekniske kompetencefærdigheder på certificeringspræstationen.

Lær hvordan

Extreme kursuskatalog

Lær hvordan

ATP-akkreditering

Som autoriseret uddannelsespartner (ATP) sikrer Insoft Services, at du får de højeste uddannelsesstandarder, der findes.

Lær hvordan

Løsninger og tjenester

Vi leverer innovativ og avanceret support til design, implementering og optimering af IT-løsninger. Vores kundebase omfatter nogle af de største Telcos globalt.

Lær hvordan

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Om os

Insoft tilbyder autoriseret uddannelses- og konsulentbistand til udvalgte IP-leverandører. Få mere at vide om, hvordan vi revolutionerer branchen.

Lær hvordan
  • +45 32 70 99 90
  • Data Wrangling with Python

    Duration
    3 Dage
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørgsel
    Data is the new oil, but it comes crude. To do anything meaningful - modelling, visualization, machine learning, for predictive analysis “ you first need to wrestle and wrangle with data. This Data Wrangling with Python course teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The course starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The course will further help you grasp concepts through real-world examples and datasets. By the end of this course, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.

    Lesson 1: Introduction to Data Structure using Python

    • Python for Data Wrangling
    • Lists, Sets, Strings, Tuples, and Dictionaries

    Lesson 2: Advanced Operations on Built-In Data Structure

    • Advanced-Data Structures
    • Basic File Operations in Python

    Lesson 3: Introduction to NumPy, Pandas, and Matplotlib

    • NumPy Arrays
    • Pandas DataFrames
    • Statistics and Visualization with NumPy and Pandas
    • Using NumPy and Pandas to Calculate Basic Descriptive Statistics on the DataFrame

    Lesson 4: Deep Dive into Data Wrangling with Python

    • Subsetting, Filtering, and Grouping
    • Detecting Outliers and Handling Missing Values
    • Concatenating, Merging, and Joining
    • Useful Methods of Pandas

    Lesson 5: Get Comfortable with a Different Kind of Data Sources

    • Reading Data from Different Text-Based (and Non-Text-Based) Sources
    • Introduction to BeautifulSoup4 and Web Page Parsing

    Lesson 6: Learning the Hidden Secrets of Data Wrangling

    • Advanced List Comprehension and the zip Function
    • Data Formatting

    Lesson 7: Advanced Web Scraping and Data Gathering

    • Basics of Web Scraping and BeautifulSoup libraries
    • Reading Data from XML

    Lesson 8: RDBMS and SQL

    • Refresher of RDBMS and SQL
    • Using an RDBMS (MySQL/PostgreSQL/SQLite)

    Lesson 9: Application in real life and Conclusion of course

    • Applying Your Knowledge to a Real-life Data Wrangling Task
    • An Extension to Data Wrangling

    Data Wrangling with Python takes a practical approach to equip beginners with the most essential data analysis tools in the shortest possible time. It contains multiple activities that use real-life business scenarios for you to practice and apply your new skills in a highly relevant context.

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Intel Core i5 or equivalent
    • Memory: 8GB RAM or higher
    • Internet Connection

    Software:

    You will also need the following software installed in advance:

    • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Ubuntu Linux, or the latest version of OS X
    • Browser: Google Chrome/Mozilla Firefox Latest Version
    • Notepad++/Sublime Text as IDE (Optional, as you can practice everything using Jupyter note course on your browser)
    • Python 3.4+ (latest is Python 3.7) installed (from https://python.org)
    • Python libraries as needed (Jupyter, NumPy, Pandas, Matplotlib, BeautifulSoup4, and so)
    Data is the new oil, but it comes crude. To do anything meaningful - modelling, visualization, machine learning, for predictive analysis “ you first need to wrestle and wrangle with data. This Data Wrangling with Python course teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The course starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The course will further help you grasp concepts through real-world examples and datasets. By the end of this course, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.

    Lesson 1: Introduction to Data Structure using Python

    • Python for Data Wrangling
    • Lists, Sets, Strings, Tuples, and Dictionaries

    Lesson 2: Advanced Operations on Built-In Data Structure

    • Advanced-Data Structures
    • Basic File Operations in Python

    Lesson 3: Introduction to NumPy, Pandas, and Matplotlib

    • NumPy Arrays
    • Pandas DataFrames
    • Statistics and Visualization with NumPy and Pandas
    • Using NumPy and Pandas to Calculate Basic Descriptive Statistics on the DataFrame

    Lesson 4: Deep Dive into Data Wrangling with Python

    • Subsetting, Filtering, and Grouping
    • Detecting Outliers and Handling Missing Values
    • Concatenating, Merging, and Joining
    • Useful Methods of Pandas

    Lesson 5: Get Comfortable with a Different Kind of Data Sources

    • Reading Data from Different Text-Based (and Non-Text-Based) Sources
    • Introduction to BeautifulSoup4 and Web Page Parsing

    Lesson 6: Learning the Hidden Secrets of Data Wrangling

    • Advanced List Comprehension and the zip Function
    • Data Formatting

    Lesson 7: Advanced Web Scraping and Data Gathering

    • Basics of Web Scraping and BeautifulSoup libraries
    • Reading Data from XML

    Lesson 8: RDBMS and SQL

    • Refresher of RDBMS and SQL
    • Using an RDBMS (MySQL/PostgreSQL/SQLite)

    Lesson 9: Application in real life and Conclusion of course

    • Applying Your Knowledge to a Real-life Data Wrangling Task
    • An Extension to Data Wrangling

    Data Wrangling with Python takes a practical approach to equip beginners with the most essential data analysis tools in the shortest possible time. It contains multiple activities that use real-life business scenarios for you to practice and apply your new skills in a highly relevant context.

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Intel Core i5 or equivalent
    • Memory: 8GB RAM or higher
    • Internet Connection

    Software:

    You will also need the following software installed in advance:

    • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Ubuntu Linux, or the latest version of OS X
    • Browser: Google Chrome/Mozilla Firefox Latest Version
    • Notepad++/Sublime Text as IDE (Optional, as you can practice everything using Jupyter note course on your browser)
    • Python 3.4+ (latest is Python 3.7) installed (from https://python.org)
    • Python libraries as needed (Jupyter, NumPy, Pandas, Matplotlib, BeautifulSoup4, and so)
      Kommende datoer
      Dato på anmodning

    Follow Up Courses

    Filtrer
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 4 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.