Cisco utbildning

Insoft Services är en av få utbildningsleverantörer inom EMEAR som erbjuder hela utbudet av Cisco-certifiering och specialiserad teknikutbildning.

Läs mer

Cisco-certifieringar

Upplev en blandad inlärningsmetod som kombinerar det bästa av instruktörsledd utbildning och e-lärande i egen takt för att hjälpa dig att förbereda dig för ditt certifieringsprov.

Läs mer

Cisco Learning Credits

Cisco Learning Credits (CLC) är förbetalda utbildningskuponger som löses in direkt med Cisco och som gör det enklare att planera för din framgång när du köper Ciscos produkter och tjänster.

Läs mer

Cisco Fortbildning

Ciscos fortbildningsprogram erbjuder alla aktiva certifikatinnehavare flexibla alternativ för att omcertifiera genom att slutföra en mängd olika kvalificerade utbildningsartiklar.

Läs mer

Cisco Digital Learning

Certifierade medarbetare är VÄRDERADE tillgångar. Utforska Ciscos officiella digitala utbildningsbibliotek för att utbilda dig själv genom inspelade sessioner.

Läs mer

Partner för affärsaktivering

Cisco Business Enablement Partner Program fokuserar på att vässa affärskunskaperna hos Cisco Channel Partners och kunder.

Läs mer

Cisco Kurskatalog

Läs mer

Fortinet-certifieringar

Fortinet Network Security Expert (NSE) -programmet är ett utbildnings- och certifieringsprogram på åtta nivåer för att lära ingenjörer om deras nätverkssäkerhet för Fortinet FW-färdigheter och erfarenheter.

Tekniska utbildningar

Tekniska utbildningar

Insoft är erkänt som Fortinet Authorized Training Center på utvalda platser i EMEA.

Läs mer

Fortinet Kurskatalog

Utforska ett brett utbud av Fortinet-scheman i olika länder samt onlinekurser.

Läs mer

ATC-status

Kolla in vår ATC-status i utvalda länder i Europa.

Läs mer

Fortinet Professionella tjänster

Globalt erkända team av certifierade experter hjälper dig att göra en smidigare övergång med våra fördefinierade konsult-, installations- och migreringspaket för ett brett utbud av Fortinet-produkter.

Läs mer

Microsoft-utbildning

Insoft Services tillhandahåller Microsoft-utbildning i EMEAR. Vi erbjuder Microsofts tekniska utbildnings- och certifieringskurser som leds av instruktörer i världsklass.

Tekniska utbildningar

Extreme-utbildning

Lär dig exceptionella kunskaper och färdigheter i Extreme Networks.

Technische Kurse

Tekniske-certifieringar

Vi tillhandahåller omfattande läroplan för tekniska kompetensfärdigheter på certifieringsprestationen.

Läs mer

Extreme Kurskatalog

Hier finden Sie alle Extreme Networks online und den von Lehrern geleiteten Kalender für den Klassenraum.

Läs mer

ATP-ackreditering

Som auktoriserad utbildningspartner (ATP) säkerställer Insoft Services att du får de högsta tillgängliga utbildningsstandarderna.

Läs mer

Konsultpaket

Vi erbjuder innovativt och avancerat stöd för att designa, implementera och optimera IT-lösningar.Vår kundbas inkluderar några av de största telekombolagen globalt.

Lösningar och tjänster

Globalt erkända team av certifierade experter hjälper dig att göra en smidigare övergång med våra fördefinierade konsult-, installations- och migreringspaket för ett brett utbud av Fortinet-produkter.

Om oss

Insoft Tillhandahåller auktoriserade utbildnings- och konsulttjänster för utvalda IP-leverantörer.Lär dig hur vi revolutionerar branschen.

Läs mer
  • +46 8 502 431 88
  • CAIP - Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

    Duration
    5 Dagar
    Delivery
    (Online och på plats)
    Price
    Pris på begäran

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced
      Datum
      Datum på begäran

    Follow Up Courses

    Filtrera
    • 5 Dagar
      Datum på begäran
      Price on Request
      Book Now
    • 1 Dag
      Datum på begäran
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.