Cisco-training

Insoft Services is een van de weinige aanbieders van opleidingen in EMEAR tot een volledige reeks van Cisco-certificering en gespecialiseerde technische opleiding aan te bieden.

Lees meer

Cisco-certificering

Ervaar een blended learning-aanpak die het beste van door een instructeur geleide training en e-learning in eigen tempo combineert om u te helpen zich voor te bereiden op uw certificeringsexamen.

Lees meer

Cisco Learning Credits

Cisco Learning Credits (CLCs) zijn prepaid trainingsvouchers die rechtstreeks bij Cisco worden ingewisseld en die het plannen van uw succes eenvoudiger maken bij de aankoop van Cisco-producten en -services.

Lees meer

Cisco Continuing Education

Het Cisco Continuing Education Program biedt alle actieve certificeringshouders flexibele opties om opnieuw te certificeren door een verscheidenheid aan in aanmerking komende trainingsitems te voltooien.

Lees meer

Cisco Digital Learning

Gecertificeerde medewerkers zijn GEWAARDEERDE activa. Verken de officiële Digital Learning Library van Cisco om uzelf te informeren via opgenomen sessies.

Lees meer

Cisco Business Enablement

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Cisco trainingscatalogus

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Fortinet-certificering

Het Fortinet Network Security Expert (NSE) -programma is een training- en certificeringsprogramma op acht niveaus om ingenieurs van hun netwerkbeveiliging te leren voor Fortinet FW-vaardigheden en -ervaring.

Technische trainingen

Fortinet-training

Insoft is erkend als Fortinet Authorized Training Center op geselecteerde locaties in EMEA.

Lees meer

Fortinet trainingscatalogus

Bekijk de volledige Fortinet trainingscatalogus. Het programma omvat een breed scala aan cursussen in eigen tempo en onder leiding van een instructeur.

Lees meer

ATC Status

Bekijk onze ATC-status in geselecteerde landen in Europa.

Lees meer

Fortinet Professionele Services

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Lees meer

Microsoft-training

Insoft Services biedt Microsoft-trainingen in EMEAR. We bieden technische trainingen en certificeringscursussen van Microsoft aan die worden geleid door instructeurs van wereldklasse.

Technische cursussen

Extreme-training

Find all the Extreme Networks online and instructor led class room based calendar here.

Technische cursussen

Technische-certificering

We provide comprehensive curriculum of technical competency skills on the certification accomplishment.

Lees meer

Extreme trainingscatalogus

Leer uitzonderlijke kennis en vaardigheden van Extreme Networks

Lees meer

ATP accreditatie

Als geautoriseerde trainingspartner (ATP) zorgt Insoft Services ervoor dat u de hoogste onderwijsnormen krijgt die beschikbaar zijn.

Lees meer

Services Oplossingen

Wij bieden innovatieve en geavanceerde ondersteuning bij het ontwerpen, implementeren en optimaliseren van IT-oplossingen.Ons klantenbestand omvat enkele van de grootste Telco's ter wereld.

Oplossingen

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Over ons

Insoft biedt geautoriseerde trainings- en consultancydiensten voor geselecteerde IP-leveranciers. Ontdek hoe we een revolutie teweegbrengen in de industrie.

Lees meer
  • +31 71 799 6230
  • You can unsubscribe from these communications at any time. For more information please review our Privacy Policy. By clicking 'Send Message' below, you consent to allow Insoft Services to store and process the personal information submitted above to provide you with the content requested.

    Practical Data Science with Amazon SageMaker

    Duration
    1 Dag
    Delivery
    (Online and onsite)
    Price
    Price Upon Request

    Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Discuss the benefits of different types of machine learning for solving business problems
    • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
    • Explain how data scientists use AWS tools and ML to solve a common business problem
    • Summarize the steps a data scientist takes to prepare data
    • Summarize the steps a data scientist takes to train ML models
    • Summarize the steps a data scientist takes to evaluate and tune ML models
    • Summarize the steps to deploy a model to an endpoint and generate predictions
    • Describe the challenges for operationalizing ML models
    • Match AWS tools with their ML function

    Module 1: Introduction to Machine Learning

    • Benefits of machine learning (ML)
    • Types of ML approaches
    • Framing the business problem
    • Prediction quality
    • Processes, roles, and responsibilities for ML projects

    Module 2: Preparing a Dataset

    • Data analysis and preparation
    • Data preparation tools
    • Demonstration: Review Amazon SageMaker Studio and Notebooks
    • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

    Module 3: Training a Model

    • Steps to train a model
    • Choose an algorithm
    • Train the model in Amazon SageMaker
    • Hands-On Lab: Training a Model with Amazon SageMaker
    • Amazon CodeWhisperer
    • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

    Module 4: Evaluating and Tuning a Model

    • Model evaluation
    • Model tuning and hyperparameter optimization
    • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

    Module 5: Deploying a Model

    • Model deployment
    • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

    Module 6: Operational Challenges

    • Responsible ML
    • ML team and MLOps
    • Automation
    • Monitoring
    • Updating models (model testing and deployment)

    Module 7: Other Model-Building Tools

    • Different tools for different skills and business needs
    • No-code ML with Amazon SageMaker Canvas
    • Demonstration: Overview of Amazon SageMaker Canvas
    • Amazon SageMaker Studio Lab
    • Demonstration: Overview of SageMaker Studio Lab
    • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

    This course is intended for:

    • Development Operations (DevOps) engineers
    • Application developers

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Entry-level knowledge of Python programming
    • Entry-level knowledge of statistics

    Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Discuss the benefits of different types of machine learning for solving business problems
    • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
    • Explain how data scientists use AWS tools and ML to solve a common business problem
    • Summarize the steps a data scientist takes to prepare data
    • Summarize the steps a data scientist takes to train ML models
    • Summarize the steps a data scientist takes to evaluate and tune ML models
    • Summarize the steps to deploy a model to an endpoint and generate predictions
    • Describe the challenges for operationalizing ML models
    • Match AWS tools with their ML function

    Module 1: Introduction to Machine Learning

    • Benefits of machine learning (ML)
    • Types of ML approaches
    • Framing the business problem
    • Prediction quality
    • Processes, roles, and responsibilities for ML projects

    Module 2: Preparing a Dataset

    • Data analysis and preparation
    • Data preparation tools
    • Demonstration: Review Amazon SageMaker Studio and Notebooks
    • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

    Module 3: Training a Model

    • Steps to train a model
    • Choose an algorithm
    • Train the model in Amazon SageMaker
    • Hands-On Lab: Training a Model with Amazon SageMaker
    • Amazon CodeWhisperer
    • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

    Module 4: Evaluating and Tuning a Model

    • Model evaluation
    • Model tuning and hyperparameter optimization
    • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

    Module 5: Deploying a Model

    • Model deployment
    • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

    Module 6: Operational Challenges

    • Responsible ML
    • ML team and MLOps
    • Automation
    • Monitoring
    • Updating models (model testing and deployment)

    Module 7: Other Model-Building Tools

    • Different tools for different skills and business needs
    • No-code ML with Amazon SageMaker Canvas
    • Demonstration: Overview of Amazon SageMaker Canvas
    • Amazon SageMaker Studio Lab
    • Demonstration: Overview of SageMaker Studio Lab
    • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

    This course is intended for:

    • Development Operations (DevOps) engineers
    • Application developers

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Entry-level knowledge of Python programming
    • Entry-level knowledge of statistics
      Datum op aanvraag

    Follow Up Courses

    Filter
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 2 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.