Cisco-training

Insoft Services is een van de weinige aanbieders van opleidingen in EMEAR tot een volledige reeks van Cisco-certificering en gespecialiseerde technische opleiding aan te bieden.

Lees meer

Cisco-certificering

Ervaar een blended learning-aanpak die het beste van door een instructeur geleide training en e-learning in eigen tempo combineert om u te helpen zich voor te bereiden op uw certificeringsexamen.

Lees meer

Cisco Learning Credits

Cisco Learning Credits (CLCs) zijn prepaid trainingsvouchers die rechtstreeks bij Cisco worden ingewisseld en die het plannen van uw succes eenvoudiger maken bij de aankoop van Cisco-producten en -services.

Lees meer

Cisco Continuing Education

Het Cisco Continuing Education Program biedt alle actieve certificeringshouders flexibele opties om opnieuw te certificeren door een verscheidenheid aan in aanmerking komende trainingsitems te voltooien.

Lees meer

Cisco Digital Learning

Gecertificeerde medewerkers zijn GEWAARDEERDE activa. Verken de officiële Digital Learning Library van Cisco om uzelf te informeren via opgenomen sessies.

Lees meer

Cisco Business Enablement

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Cisco trainingscatalogus

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Fortinet-certificering

Het Fortinet Network Security Expert (NSE) -programma is een training- en certificeringsprogramma op acht niveaus om ingenieurs van hun netwerkbeveiliging te leren voor Fortinet FW-vaardigheden en -ervaring.

Technische trainingen

Fortinet-training

Insoft is erkend als Fortinet Authorized Training Center op geselecteerde locaties in EMEA.

Lees meer

Fortinet trainingscatalogus

Bekijk de volledige Fortinet trainingscatalogus. Het programma omvat een breed scala aan cursussen in eigen tempo en onder leiding van een instructeur.

Lees meer

ATC Status

Bekijk onze ATC-status in geselecteerde landen in Europa.

Lees meer

Fortinet Professionele Services

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Lees meer

Microsoft-training

Insoft Services biedt Microsoft-trainingen in EMEAR. We bieden technische trainingen en certificeringscursussen van Microsoft aan die worden geleid door instructeurs van wereldklasse.

Technische cursussen

Extreme-training

Find all the Extreme Networks online and instructor led class room based calendar here.

Technische cursussen

Technische-certificering

We provide comprehensive curriculum of technical competency skills on the certification accomplishment.

Lees meer

Extreme trainingscatalogus

Leer uitzonderlijke kennis en vaardigheden van Extreme Networks

Lees meer

ATP accreditatie

Als geautoriseerde trainingspartner (ATP) zorgt Insoft Services ervoor dat u de hoogste onderwijsnormen krijgt die beschikbaar zijn.

Lees meer

Services Oplossingen

Wij bieden innovatieve en geavanceerde ondersteuning bij het ontwerpen, implementeren en optimaliseren van IT-oplossingen.Ons klantenbestand omvat enkele van de grootste Telco's ter wereld.

Oplossingen

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Over ons

Insoft biedt geautoriseerde trainings- en consultancydiensten voor geselecteerde IP-leveranciers. Ontdek hoe we een revolutie teweegbrengen in de industrie.

Lees meer
  • +31 71 799 6230
  • You can unsubscribe from these communications at any time. For more information please review our Privacy Policy. By clicking 'Send Message' below, you consent to allow Insoft Services to store and process the personal information submitted above to provide you with the content requested.

    Developing Generative AI Applications on AWS

    Duration
    2 Dagen
    Delivery
    (Online and onsite)
    Price
    Price Upon Request

    This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

     

    • Course level: Advanced

    In this course, you will learn to:

    • Describe generative AI and how it aligns to machine learning
    • Define the importance of generative AI and explain its potential risks and benefits
    • Identify business value from generative AI use cases
    • Discuss the technical foundations and key terminology for generative AI
    • Explain the steps for planning a generative AI project
    • Identify some of the risks and mitigations when using generative AI
    • Understand how Amazon Bedrock works
    • Familiarize yourself with basic concepts of Amazon Bedrock
    • Recognize the benefits of Amazon Bedrock
    • List typical use cases for Amazon Bedrock
    • Describe the typical architecture associated with an Amazon Bedrock solution
    • Understand the cost structure of Amazon Bedrock
    • Implement a demonstration of Amazon Bedrock in the AWS Management Console
    • Define prompt engineering and apply general best practices when interacting with FMs
    • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
    • Apply advanced prompt techniques when necessary for your use case
    • Identify which prompt-techniques are best-suited for specific models
    • Identify potential prompt misuses
    • Analyze potential bias in FM responses and design prompts that mitigate that bias
    • Identify the components of a generative AI application and how to customize a foundation model (FM)
    • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
    • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
    • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
    • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
    • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

    Day 1

     

    Module 1: Introduction to Generative AI – Art of the Possible

    • Overview of ML
    • Basics of generative AI
    • Generative AI use cases
    • Generative AI in practice
    • Risks and benefits

    Module 2: Planning a Generative AI Project

    • Generative AI fundamentals
    • Generative AI in practice
    • Generative AI context
    • Steps in planning a generative AI project
    • Risks and mitigation

    Module 3: Getting Started with Amazon Bedrock

    • Introduction to Amazon Bedrock
    • Architecture and use cases
    • How to use Amazon Bedrock
    • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

    Module 4: Foundations of Prompt Engineering

    • Basics of foundation models
    • Fundamentals of prompt engineering
    • Basic prompt techniques
    • Advanced prompt techniques
    • Demonstration: Fine-Tuning a Basic Text Prompt
    • Model-specific prompt techniques
    • Addressing prompt misuses
    • Mitigating bias
    • Demonstration: Image Bias-Mitigation

     

    Day 2

     

    Module 5: Amazon Bedrock Application Components

    • Applications and use cases
    • Overview of generative AI application components
    • Foundation models and the FM interface
    • Working with datasets and embeddings
    • Demonstration: Word Embeddings
    • Additional application components
    • RAG
    • Model fine-tuning
    • Securing generative AI applications
    • Generative AI application architecture

    Module 6: Amazon Bedrock Foundation Models

    • Introduction to Amazon Bedrock foundation models
    • Using Amazon Bedrock FMs for inference
    • Amazon Bedrock methods
    • Data protection and auditability
    • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

    Module 7: LangChain

    • Optimizing LLM performance
    • Integrating AWS and LangChain
    • Using models with LangChain
    • Constructing prompts
    • Structuring documents with indexes
    • Storing and retrieving data with memory
    • Using chains to sequence components
    • Managing external resources with LangChain agents

    Module 8: Architecture Patterns

    • Introduction to architecture patterns
    • Text summarization
    • Lab: Using Amazon Titan Text Premier to summarize text of small files
    • Lab: Summarize long texts with Amazon Titan
    • Question answering
    • Lab: Using Amazon Bedrock for question answering
    • Chatbots
    • Lab: Build a chatbot
    • Code generation
    • Lab: Using Amazon Bedrock Models for Code Generation
    • LangChain and agents for Amazon Bedrock
    • Lab: Building conversational applications with the Converse API

    This course is intended for:

    • Software developers interested in leveraging large language models without fine-tuning

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Intermediate-level proficiency in Python

    This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

     

    • Course level: Advanced

    In this course, you will learn to:

    • Describe generative AI and how it aligns to machine learning
    • Define the importance of generative AI and explain its potential risks and benefits
    • Identify business value from generative AI use cases
    • Discuss the technical foundations and key terminology for generative AI
    • Explain the steps for planning a generative AI project
    • Identify some of the risks and mitigations when using generative AI
    • Understand how Amazon Bedrock works
    • Familiarize yourself with basic concepts of Amazon Bedrock
    • Recognize the benefits of Amazon Bedrock
    • List typical use cases for Amazon Bedrock
    • Describe the typical architecture associated with an Amazon Bedrock solution
    • Understand the cost structure of Amazon Bedrock
    • Implement a demonstration of Amazon Bedrock in the AWS Management Console
    • Define prompt engineering and apply general best practices when interacting with FMs
    • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
    • Apply advanced prompt techniques when necessary for your use case
    • Identify which prompt-techniques are best-suited for specific models
    • Identify potential prompt misuses
    • Analyze potential bias in FM responses and design prompts that mitigate that bias
    • Identify the components of a generative AI application and how to customize a foundation model (FM)
    • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
    • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
    • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
    • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
    • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

    Day 1

     

    Module 1: Introduction to Generative AI – Art of the Possible

    • Overview of ML
    • Basics of generative AI
    • Generative AI use cases
    • Generative AI in practice
    • Risks and benefits

    Module 2: Planning a Generative AI Project

    • Generative AI fundamentals
    • Generative AI in practice
    • Generative AI context
    • Steps in planning a generative AI project
    • Risks and mitigation

    Module 3: Getting Started with Amazon Bedrock

    • Introduction to Amazon Bedrock
    • Architecture and use cases
    • How to use Amazon Bedrock
    • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

    Module 4: Foundations of Prompt Engineering

    • Basics of foundation models
    • Fundamentals of prompt engineering
    • Basic prompt techniques
    • Advanced prompt techniques
    • Demonstration: Fine-Tuning a Basic Text Prompt
    • Model-specific prompt techniques
    • Addressing prompt misuses
    • Mitigating bias
    • Demonstration: Image Bias-Mitigation

     

    Day 2

     

    Module 5: Amazon Bedrock Application Components

    • Applications and use cases
    • Overview of generative AI application components
    • Foundation models and the FM interface
    • Working with datasets and embeddings
    • Demonstration: Word Embeddings
    • Additional application components
    • RAG
    • Model fine-tuning
    • Securing generative AI applications
    • Generative AI application architecture

    Module 6: Amazon Bedrock Foundation Models

    • Introduction to Amazon Bedrock foundation models
    • Using Amazon Bedrock FMs for inference
    • Amazon Bedrock methods
    • Data protection and auditability
    • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

    Module 7: LangChain

    • Optimizing LLM performance
    • Integrating AWS and LangChain
    • Using models with LangChain
    • Constructing prompts
    • Structuring documents with indexes
    • Storing and retrieving data with memory
    • Using chains to sequence components
    • Managing external resources with LangChain agents

    Module 8: Architecture Patterns

    • Introduction to architecture patterns
    • Text summarization
    • Lab: Using Amazon Titan Text Premier to summarize text of small files
    • Lab: Summarize long texts with Amazon Titan
    • Question answering
    • Lab: Using Amazon Bedrock for question answering
    • Chatbots
    • Lab: Build a chatbot
    • Code generation
    • Lab: Using Amazon Bedrock Models for Code Generation
    • LangChain and agents for Amazon Bedrock
    • Lab: Building conversational applications with the Converse API

    This course is intended for:

    • Software developers interested in leveraging large language models without fine-tuning

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Intermediate-level proficiency in Python
      Datum op aanvraag

    Follow Up Courses

    Filter
    • 2 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now
    • 2 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 3 Dagen
      Datum op aanvraag
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.