Cisco-training

Insoft Services is een van de weinige aanbieders van opleidingen in EMEAR tot een volledige reeks van Cisco-certificering en gespecialiseerde technische opleiding aan te bieden.

Lees meer

Cisco-certificering

Ervaar een blended learning-aanpak die het beste van door een instructeur geleide training en e-learning in eigen tempo combineert om u te helpen zich voor te bereiden op uw certificeringsexamen.

Lees meer

Cisco Learning Credits

Cisco Learning Credits (CLCs) zijn prepaid trainingsvouchers die rechtstreeks bij Cisco worden ingewisseld en die het plannen van uw succes eenvoudiger maken bij de aankoop van Cisco-producten en -services.

Lees meer

Cisco Continuing Education

Het Cisco Continuing Education Program biedt alle actieve certificeringshouders flexibele opties om opnieuw te certificeren door een verscheidenheid aan in aanmerking komende trainingsitems te voltooien.

Lees meer

Cisco Digital Learning

Gecertificeerde medewerkers zijn GEWAARDEERDE activa. Verken de officiële Digital Learning Library van Cisco om uzelf te informeren via opgenomen sessies.

Lees meer

Cisco Business Enablement

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Cisco trainingscatalogus

Het Cisco Business Enablement Partner Program richt zich op het aanscherpen van de zakelijke vaardigheden van Cisco Channel Partners en klanten.

Lees meer

Fortinet-certificering

Het Fortinet Network Security Expert (NSE) -programma is een training- en certificeringsprogramma op acht niveaus om ingenieurs van hun netwerkbeveiliging te leren voor Fortinet FW-vaardigheden en -ervaring.

Technische trainingen

Fortinet-training

Insoft is erkend als Fortinet Authorized Training Center op geselecteerde locaties in EMEA.

Lees meer

Fortinet trainingscatalogus

Bekijk de volledige Fortinet trainingscatalogus. Het programma omvat een breed scala aan cursussen in eigen tempo en onder leiding van een instructeur.

Lees meer

ATC Status

Bekijk onze ATC-status in geselecteerde landen in Europa.

Lees meer

Fortinet Professionele Services

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Lees meer

Microsoft-training

Insoft Services biedt Microsoft-trainingen in EMEAR. We bieden technische trainingen en certificeringscursussen van Microsoft aan die worden geleid door instructeurs van wereldklasse.

Technische cursussen

Extreme-training

Find all the Extreme Networks online and instructor led class room based calendar here.

Technische cursussen

Technische-certificering

We provide comprehensive curriculum of technical competency skills on the certification accomplishment.

Lees meer

Extreme trainingscatalogus

Leer uitzonderlijke kennis en vaardigheden van Extreme Networks

Lees meer

ATP accreditatie

Als geautoriseerde trainingspartner (ATP) zorgt Insoft Services ervoor dat u de hoogste onderwijsnormen krijgt die beschikbaar zijn.

Lees meer

Services Oplossingen

Wij bieden innovatieve en geavanceerde ondersteuning bij het ontwerpen, implementeren en optimaliseren van IT-oplossingen.Ons klantenbestand omvat enkele van de grootste Telco's ter wereld.

Oplossingen

Wereldwijd erkend team van gecertificeerde experts helpt u een soepelere overgang te maken met onze vooraf gedefinieerde consultancy-, installatie- en migratiepakketten voor een breed scala aan Fortinet-producten.

Over ons

Insoft biedt geautoriseerde trainings- en consultancydiensten voor geselecteerde IP-leveranciers. Ontdek hoe we een revolutie teweegbrengen in de industrie.

Lees meer
  • +31 71 799 6230
  • You can unsubscribe from these communications at any time. For more information please review our Privacy Policy. By clicking 'Send Message' below, you consent to allow Insoft Services to store and process the personal information submitted above to provide you with the content requested.

    CAIP - Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

    Duration
    5 Dagen
    Delivery
    (Online and onsite)
    Price
    Price Upon Request

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced
      Datum op aanvraag

    Follow Up Courses

    Filter
    • 5 Dagen
      Datum op aanvraag
      Price on Request
      Book Now
    • 1 Dag
      Datum op aanvraag
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.