Cisco-opplæring

Insoft Services er en av få opplæringsleverandører i EMEAR som tilbyr hele spekteret av Cisco-sertifisering og spesialisert teknologiopplæring.

Les mer

Cisco Sertifisering

Opplev en blandet læringstilnærming som kombinerer det beste av instruktørledet opplæring og e-læring i eget tempo for å hjelpe deg med å forberede deg til sertifiseringseksamen.

Les mer

Cisco Learning Credits

Cisco Learning Credits (CLC) er forhåndsbetalte opplæringskuponger innløst direkte med Cisco som gjør planleggingen for suksessen din enklere når du kjøper Cisco-produkter og -tjenester.

Les mer

Etterutdanning

Cisco Continuing Education Program tilbyr alle aktive sertifiseringsinnehavere fleksible alternativer for å resertifisere ved å fullføre en rekke kvalifiserte opplæringselementer.

Les mer

Cisco Digital Learning

Sertifiserte ansatte er verdsatte eiendeler. Utforsk Ciscos offisielle digitale læringsbibliotek for å utdanne deg gjennom innspilte økter.

Les mer

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på å skjerpe forretningsferdighetene til Cisco Channel Partners og kunder.

Les mer

Cisco opplæringskatalog

Les mer

Fortinet Sertifisering

Fortinet Network Security Expert (NSE)-programmet er et opplærings- og sertifiseringsprogram på åtte nivåer for å lære ingeniører om nettverkssikkerheten for Fortinet FW-ferdigheter og -erfaring.

Tekniske kurs

Fortinet-opplæring

Insoft er anerkjent som Fortinet Autorisert Opplæringssenter på utvalgte steder i EMEA.

Les mer

Fortinet opplæringskatalog

Utforsk et bredt utvalg av Fortinet Schedule på tvers av forskjellige land så vel som online kurs.

Les mer

ATC-status

Sjekk atc-statusen vår på tvers av utvalgte land i Europa.

Les mer

Pakker for Fortinet-tjenester

Insoft Services har utviklet en spesifikk løsning for å effektivisere og forenkle prosessen med å installere eller migrere til Fortinet-produkter.

Les mer

Microsoft-opplæring

Insoft Services gir Microsoft opplæring i EMEAR. Vi tilbyr Microsofts tekniske opplærings- og sertifiseringskurs som ledes av instruktører i verdensklasse.

Tekniske kurs

Extreme-opplæring

Lær eksepsjonell kunnskap og ferdigheter i ekstreme nettverk.

Les mer

Teknisk sertifisering

Vi tilbyr omfattende læreplan over tekniske kompetanseferdigheter om sertifiseringsprestasjonen.

Les mer

Extreme opplæringskatalog

Tekniske kurs

ATP-akkreditering

Som autorisert opplæringspartner (ATP) sørger Insoft Services for at du får de høyeste utdanningsstandardene som er tilgjengelige.

Les mer

Løsninger og tjenester

Vi tilbyr innovativ og avansert støtte for design, implementering og optimalisering av IT-løsninger. Vår kundebase inkluderer noen av de største Telcos globalt.

Les mer

Globalt anerkjent team av sertifiserte eksperter hjelper deg med å gjøre en jevnere overgang med våre forhåndsdefinerte konsulent-, installasjons- og migrasjonspakker for et bredt spekter av Fortinet-produkter.

Om oss

Insoft Tilbyr autoriserte opplærings- og konsulenttjenester for utvalgte IP-leverandører. Finn ut hvordan vi revolusjonerer bransjen.

Les mer
  • +47 23 96 21 03
  • Developing Generative AI Applications on AWS

    Duration
    2 Dager
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørsel

    This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

     

    • Course level: Advanced

    In this course, you will learn to:

    • Describe generative AI and how it aligns to machine learning
    • Define the importance of generative AI and explain its potential risks and benefits
    • Identify business value from generative AI use cases
    • Discuss the technical foundations and key terminology for generative AI
    • Explain the steps for planning a generative AI project
    • Identify some of the risks and mitigations when using generative AI
    • Understand how Amazon Bedrock works
    • Familiarize yourself with basic concepts of Amazon Bedrock
    • Recognize the benefits of Amazon Bedrock
    • List typical use cases for Amazon Bedrock
    • Describe the typical architecture associated with an Amazon Bedrock solution
    • Understand the cost structure of Amazon Bedrock
    • Implement a demonstration of Amazon Bedrock in the AWS Management Console
    • Define prompt engineering and apply general best practices when interacting with FMs
    • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
    • Apply advanced prompt techniques when necessary for your use case
    • Identify which prompt-techniques are best-suited for specific models
    • Identify potential prompt misuses
    • Analyze potential bias in FM responses and design prompts that mitigate that bias
    • Identify the components of a generative AI application and how to customize a foundation model (FM)
    • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
    • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
    • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
    • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
    • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

    Day 1

     

    Module 1: Introduction to Generative AI – Art of the Possible

    • Overview of ML
    • Basics of generative AI
    • Generative AI use cases
    • Generative AI in practice
    • Risks and benefits

    Module 2: Planning a Generative AI Project

    • Generative AI fundamentals
    • Generative AI in practice
    • Generative AI context
    • Steps in planning a generative AI project
    • Risks and mitigation

    Module 3: Getting Started with Amazon Bedrock

    • Introduction to Amazon Bedrock
    • Architecture and use cases
    • How to use Amazon Bedrock
    • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

    Module 4: Foundations of Prompt Engineering

    • Basics of foundation models
    • Fundamentals of prompt engineering
    • Basic prompt techniques
    • Advanced prompt techniques
    • Demonstration: Fine-Tuning a Basic Text Prompt
    • Model-specific prompt techniques
    • Addressing prompt misuses
    • Mitigating bias
    • Demonstration: Image Bias-Mitigation

     

    Day 2

     

    Module 5: Amazon Bedrock Application Components

    • Applications and use cases
    • Overview of generative AI application components
    • Foundation models and the FM interface
    • Working with datasets and embeddings
    • Demonstration: Word Embeddings
    • Additional application components
    • RAG
    • Model fine-tuning
    • Securing generative AI applications
    • Generative AI application architecture

    Module 6: Amazon Bedrock Foundation Models

    • Introduction to Amazon Bedrock foundation models
    • Using Amazon Bedrock FMs for inference
    • Amazon Bedrock methods
    • Data protection and auditability
    • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

    Module 7: LangChain

    • Optimizing LLM performance
    • Integrating AWS and LangChain
    • Using models with LangChain
    • Constructing prompts
    • Structuring documents with indexes
    • Storing and retrieving data with memory
    • Using chains to sequence components
    • Managing external resources with LangChain agents

    Module 8: Architecture Patterns

    • Introduction to architecture patterns
    • Text summarization
    • Lab: Using Amazon Titan Text Premier to summarize text of small files
    • Lab: Summarize long texts with Amazon Titan
    • Question answering
    • Lab: Using Amazon Bedrock for question answering
    • Chatbots
    • Lab: Build a chatbot
    • Code generation
    • Lab: Using Amazon Bedrock Models for Code Generation
    • LangChain and agents for Amazon Bedrock
    • Lab: Building conversational applications with the Converse API

    This course is intended for:

    • Software developers interested in leveraging large language models without fine-tuning

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Intermediate-level proficiency in Python

    This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

     

    • Course level: Advanced

    In this course, you will learn to:

    • Describe generative AI and how it aligns to machine learning
    • Define the importance of generative AI and explain its potential risks and benefits
    • Identify business value from generative AI use cases
    • Discuss the technical foundations and key terminology for generative AI
    • Explain the steps for planning a generative AI project
    • Identify some of the risks and mitigations when using generative AI
    • Understand how Amazon Bedrock works
    • Familiarize yourself with basic concepts of Amazon Bedrock
    • Recognize the benefits of Amazon Bedrock
    • List typical use cases for Amazon Bedrock
    • Describe the typical architecture associated with an Amazon Bedrock solution
    • Understand the cost structure of Amazon Bedrock
    • Implement a demonstration of Amazon Bedrock in the AWS Management Console
    • Define prompt engineering and apply general best practices when interacting with FMs
    • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
    • Apply advanced prompt techniques when necessary for your use case
    • Identify which prompt-techniques are best-suited for specific models
    • Identify potential prompt misuses
    • Analyze potential bias in FM responses and design prompts that mitigate that bias
    • Identify the components of a generative AI application and how to customize a foundation model (FM)
    • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
    • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
    • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
    • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
    • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

    Day 1

     

    Module 1: Introduction to Generative AI – Art of the Possible

    • Overview of ML
    • Basics of generative AI
    • Generative AI use cases
    • Generative AI in practice
    • Risks and benefits

    Module 2: Planning a Generative AI Project

    • Generative AI fundamentals
    • Generative AI in practice
    • Generative AI context
    • Steps in planning a generative AI project
    • Risks and mitigation

    Module 3: Getting Started with Amazon Bedrock

    • Introduction to Amazon Bedrock
    • Architecture and use cases
    • How to use Amazon Bedrock
    • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

    Module 4: Foundations of Prompt Engineering

    • Basics of foundation models
    • Fundamentals of prompt engineering
    • Basic prompt techniques
    • Advanced prompt techniques
    • Demonstration: Fine-Tuning a Basic Text Prompt
    • Model-specific prompt techniques
    • Addressing prompt misuses
    • Mitigating bias
    • Demonstration: Image Bias-Mitigation

     

    Day 2

     

    Module 5: Amazon Bedrock Application Components

    • Applications and use cases
    • Overview of generative AI application components
    • Foundation models and the FM interface
    • Working with datasets and embeddings
    • Demonstration: Word Embeddings
    • Additional application components
    • RAG
    • Model fine-tuning
    • Securing generative AI applications
    • Generative AI application architecture

    Module 6: Amazon Bedrock Foundation Models

    • Introduction to Amazon Bedrock foundation models
    • Using Amazon Bedrock FMs for inference
    • Amazon Bedrock methods
    • Data protection and auditability
    • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

    Module 7: LangChain

    • Optimizing LLM performance
    • Integrating AWS and LangChain
    • Using models with LangChain
    • Constructing prompts
    • Structuring documents with indexes
    • Storing and retrieving data with memory
    • Using chains to sequence components
    • Managing external resources with LangChain agents

    Module 8: Architecture Patterns

    • Introduction to architecture patterns
    • Text summarization
    • Lab: Using Amazon Titan Text Premier to summarize text of small files
    • Lab: Summarize long texts with Amazon Titan
    • Question answering
    • Lab: Using Amazon Bedrock for question answering
    • Chatbots
    • Lab: Build a chatbot
    • Code generation
    • Lab: Using Amazon Bedrock Models for Code Generation
    • LangChain and agents for Amazon Bedrock
    • Lab: Building conversational applications with the Converse API

    This course is intended for:

    • Software developers interested in leveraging large language models without fine-tuning

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Intermediate-level proficiency in Python
      Datoer
      Date on Request

    Follow Up Courses

    Filtrer
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 1 Dag
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.