Cisco-opplæring

Insoft Services er en av få opplæringsleverandører i EMEAR som tilbyr hele spekteret av Cisco-sertifisering og spesialisert teknologiopplæring.

Les mer

Cisco Sertifisering

Opplev en blandet læringstilnærming som kombinerer det beste av instruktørledet opplæring og e-læring i eget tempo for å hjelpe deg med å forberede deg til sertifiseringseksamen.

Les mer

Cisco Learning Credits

Cisco Learning Credits (CLC) er forhåndsbetalte opplæringskuponger innløst direkte med Cisco som gjør planleggingen for suksessen din enklere når du kjøper Cisco-produkter og -tjenester.

Les mer

Etterutdanning

Cisco Continuing Education Program tilbyr alle aktive sertifiseringsinnehavere fleksible alternativer for å resertifisere ved å fullføre en rekke kvalifiserte opplæringselementer.

Les mer

Cisco Digital Learning

Sertifiserte ansatte er verdsatte eiendeler. Utforsk Ciscos offisielle digitale læringsbibliotek for å utdanne deg gjennom innspilte økter.

Les mer

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på å skjerpe forretningsferdighetene til Cisco Channel Partners og kunder.

Les mer

Cisco opplæringskatalog

Les mer

Fortinet Sertifisering

Fortinet Network Security Expert (NSE)-programmet er et opplærings- og sertifiseringsprogram på åtte nivåer for å lære ingeniører om nettverkssikkerheten for Fortinet FW-ferdigheter og -erfaring.

Tekniske kurs

Fortinet-opplæring

Insoft er anerkjent som Fortinet Autorisert Opplæringssenter på utvalgte steder i EMEA.

Les mer

Fortinet opplæringskatalog

Utforsk et bredt utvalg av Fortinet Schedule på tvers av forskjellige land så vel som online kurs.

Les mer

ATC-status

Sjekk atc-statusen vår på tvers av utvalgte land i Europa.

Les mer

Pakker for Fortinet-tjenester

Insoft Services har utviklet en spesifikk løsning for å effektivisere og forenkle prosessen med å installere eller migrere til Fortinet-produkter.

Les mer

Microsoft-opplæring

Insoft Services gir Microsoft opplæring i EMEAR. Vi tilbyr Microsofts tekniske opplærings- og sertifiseringskurs som ledes av instruktører i verdensklasse.

Tekniske kurs

Extreme-opplæring

Lær eksepsjonell kunnskap og ferdigheter i ekstreme nettverk.

Les mer

Teknisk sertifisering

Vi tilbyr omfattende læreplan over tekniske kompetanseferdigheter om sertifiseringsprestasjonen.

Les mer

Extreme opplæringskatalog

Tekniske kurs

ATP-akkreditering

Som autorisert opplæringspartner (ATP) sørger Insoft Services for at du får de høyeste utdanningsstandardene som er tilgjengelige.

Les mer

Løsninger og tjenester

Vi tilbyr innovativ og avansert støtte for design, implementering og optimalisering av IT-løsninger. Vår kundebase inkluderer noen av de største Telcos globalt.

Les mer

Globalt anerkjent team av sertifiserte eksperter hjelper deg med å gjøre en jevnere overgang med våre forhåndsdefinerte konsulent-, installasjons- og migrasjonspakker for et bredt spekter av Fortinet-produkter.

Om oss

Insoft Tilbyr autoriserte opplærings- og konsulenttjenester for utvalgte IP-leverandører. Finn ut hvordan vi revolusjonerer bransjen.

Les mer
  • +47 23 96 21 03
  • Data Science for Marketing Analytics

    Duration
    3 Dager
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørsel
    The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments. The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modelling customer product choices. By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.  

    Lesson One: Data Preparation and Cleaning

    • Data Models and Structured Data
    • pandas
    • Data Manipulation

    Lesson Two: Data Exploration and Visualization

    • Identifying the Right Attributes
    • Generating Targeted Insights
    • Visualizing Data

    Lesson Three: Unsupervised Learning: Customer Segmentation

    • Customer Segmentation Methods
    • Similarity and Data Standardization
    • k-means Clustering

    Lesson Four: Choosing the Best Segmentation Approach

    • Choosing the Number of Clusters
    • Different Methods of Clustering
    • Evaluating Clustering

    Lesson Five: Predicting Customer Revenue Using Linear Regression

    • Understanding Regression
    • Feature Engineering for Regression
    • Performing and Interpreting Linear Regression

    Lesson Six: Other Regression Techniques and Tools for Evaluation

    • Evaluating the Accuracy of a Regression Model
    • Using Regularization for Feature Selection
    • Tree-Based Regression Models

    Lesson Seven: Supervised Learning: Predicting Customer Churn

    • Classification Problems
    • Understanding Logistic Regression
    • Creating a Data Science Pipeline

    Lesson Eight: Fine-Tuning Classification Algorithms

    • Support Vector Machine
    • Decision Trees
    • Random Forest
    • Preprocessing Data for Machine Learning Models
    • Model Evaluation
    • Performance Metrics

    Lesson Nine: Modeling Customer Choice

    • Understanding Multiclass Classification
    • Class Imbalanced Data

    Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.

    It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.

     

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Dual Core or better
    • Memory: 4 GB RAM
    • Storage: 10 GB available space

     

    Software:

    You’ll also need the following software installed in advance:

    • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
    • Browser: Google Chrome or Mozilla Firefox
    • Conda
    • Python 3.x
    The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments. The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modelling customer product choices. By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.  

    Lesson One: Data Preparation and Cleaning

    • Data Models and Structured Data
    • pandas
    • Data Manipulation

    Lesson Two: Data Exploration and Visualization

    • Identifying the Right Attributes
    • Generating Targeted Insights
    • Visualizing Data

    Lesson Three: Unsupervised Learning: Customer Segmentation

    • Customer Segmentation Methods
    • Similarity and Data Standardization
    • k-means Clustering

    Lesson Four: Choosing the Best Segmentation Approach

    • Choosing the Number of Clusters
    • Different Methods of Clustering
    • Evaluating Clustering

    Lesson Five: Predicting Customer Revenue Using Linear Regression

    • Understanding Regression
    • Feature Engineering for Regression
    • Performing and Interpreting Linear Regression

    Lesson Six: Other Regression Techniques and Tools for Evaluation

    • Evaluating the Accuracy of a Regression Model
    • Using Regularization for Feature Selection
    • Tree-Based Regression Models

    Lesson Seven: Supervised Learning: Predicting Customer Churn

    • Classification Problems
    • Understanding Logistic Regression
    • Creating a Data Science Pipeline

    Lesson Eight: Fine-Tuning Classification Algorithms

    • Support Vector Machine
    • Decision Trees
    • Random Forest
    • Preprocessing Data for Machine Learning Models
    • Model Evaluation
    • Performance Metrics

    Lesson Nine: Modeling Customer Choice

    • Understanding Multiclass Classification
    • Class Imbalanced Data

    Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.

    It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.

     

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Dual Core or better
    • Memory: 4 GB RAM
    • Storage: 10 GB available space

     

    Software:

    You’ll also need the following software installed in advance:

    • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
    • Browser: Google Chrome or Mozilla Firefox
    • Conda
    • Python 3.x
      Datoer
      Date on Request

    Follow Up Courses

    Filtrer
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 4 Dager
      Date on Request
      Price on Request
      Book Now
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.