Cisco-opplæring

Insoft Services er en av få opplæringsleverandører i EMEAR som tilbyr hele spekteret av Cisco-sertifisering og spesialisert teknologiopplæring.

Les mer

Cisco Sertifisering

Opplev en blandet læringstilnærming som kombinerer det beste av instruktørledet opplæring og e-læring i eget tempo for å hjelpe deg med å forberede deg til sertifiseringseksamen.

Les mer

Cisco Learning Credits

Cisco Learning Credits (CLC) er forhåndsbetalte opplæringskuponger innløst direkte med Cisco som gjør planleggingen for suksessen din enklere når du kjøper Cisco-produkter og -tjenester.

Les mer

Etterutdanning

Cisco Continuing Education Program tilbyr alle aktive sertifiseringsinnehavere fleksible alternativer for å resertifisere ved å fullføre en rekke kvalifiserte opplæringselementer.

Les mer

Cisco Digital Learning

Sertifiserte ansatte er verdsatte eiendeler. Utforsk Ciscos offisielle digitale læringsbibliotek for å utdanne deg gjennom innspilte økter.

Les mer

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på å skjerpe forretningsferdighetene til Cisco Channel Partners og kunder.

Les mer

Cisco opplæringskatalog

Les mer

Fortinet Sertifisering

Fortinet Network Security Expert (NSE)-programmet er et opplærings- og sertifiseringsprogram på åtte nivåer for å lære ingeniører om nettverkssikkerheten for Fortinet FW-ferdigheter og -erfaring.

Tekniske kurs

Fortinet-opplæring

Insoft er anerkjent som Fortinet Autorisert Opplæringssenter på utvalgte steder i EMEA.

Les mer

Fortinet opplæringskatalog

Utforsk et bredt utvalg av Fortinet Schedule på tvers av forskjellige land så vel som online kurs.

Les mer

ATC-status

Sjekk atc-statusen vår på tvers av utvalgte land i Europa.

Les mer

Pakker for Fortinet-tjenester

Insoft Services har utviklet en spesifikk løsning for å effektivisere og forenkle prosessen med å installere eller migrere til Fortinet-produkter.

Les mer

Microsoft-opplæring

Insoft Services gir Microsoft opplæring i EMEAR. Vi tilbyr Microsofts tekniske opplærings- og sertifiseringskurs som ledes av instruktører i verdensklasse.

Tekniske kurs

Extreme-opplæring

Lær eksepsjonell kunnskap og ferdigheter i ekstreme nettverk.

Les mer

Teknisk sertifisering

Vi tilbyr omfattende læreplan over tekniske kompetanseferdigheter om sertifiseringsprestasjonen.

Les mer

Extreme opplæringskatalog

Tekniske kurs

ATP-akkreditering

Som autorisert opplæringspartner (ATP) sørger Insoft Services for at du får de høyeste utdanningsstandardene som er tilgjengelige.

Les mer

Løsninger og tjenester

Vi tilbyr innovativ og avansert støtte for design, implementering og optimalisering av IT-løsninger. Vår kundebase inkluderer noen av de største Telcos globalt.

Les mer

Globalt anerkjent team av sertifiserte eksperter hjelper deg med å gjøre en jevnere overgang med våre forhåndsdefinerte konsulent-, installasjons- og migrasjonspakker for et bredt spekter av Fortinet-produkter.

Om oss

Insoft Tilbyr autoriserte opplærings- og konsulenttjenester for utvalgte IP-leverandører. Finn ut hvordan vi revolusjonerer bransjen.

Les mer
  • +47 23 96 21 03
  • Applied Unsupervised Learning with R

    Duration
    2 Dager
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørsel
    Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions. This course begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the course also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models. By the end of this course, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection.  

    After completing this course, you will be able to:

    • Implement clustering methods such as agglomerative, and divisive
    • Write code in R to analyze market segmentation and consumer behaviour
    • Estimate distribution and probabilities of different outcomes
    • Implement dimension reduction using principal component analysis
    • Apply anomaly detection methods to identify fraud
    • Design algorithms with R and learn how to edit or improve code

    Applied Unsupervised Learning with R is designed for business professionals who want to learn about methods to understand their data better, and developers who have an interest in unsupervised learning.

    Although the course is for beginners, it will be beneficial to have some basic, beginner-level familiarity with R. This includes an understanding of how to open the R console, how to read data, and how to create a loop. To easily understand the concepts of this course, you should also know basic mathematical concepts, including exponents, square roots, means, and medians.

     

    Hardware:

    For the optimal student experience, we recommend the following hardware configuration:

    • Processor: Intel Core i5 or equivalent
    • Memory: 4 GB RAM
    • Storage: 5 GB available space
    • An internet connection

     

    Software:

    • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Linux (Ubuntu, Debian, Red Hat, or Suse), or the latest version of OS X
    • R (3.0.0 or more recent, available for free at https://cran.r-project.org/)
    Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and all features of R that enable you to understand your data better and get answers to all your business questions. This course begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the course also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models. By the end of this course, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection.  

    After completing this course, you will be able to:

    • Implement clustering methods such as agglomerative, and divisive
    • Write code in R to analyze market segmentation and consumer behaviour
    • Estimate distribution and probabilities of different outcomes
    • Implement dimension reduction using principal component analysis
    • Apply anomaly detection methods to identify fraud
    • Design algorithms with R and learn how to edit or improve code

    Applied Unsupervised Learning with R is designed for business professionals who want to learn about methods to understand their data better, and developers who have an interest in unsupervised learning.

    Although the course is for beginners, it will be beneficial to have some basic, beginner-level familiarity with R. This includes an understanding of how to open the R console, how to read data, and how to create a loop. To easily understand the concepts of this course, you should also know basic mathematical concepts, including exponents, square roots, means, and medians.

     

    Hardware:

    For the optimal student experience, we recommend the following hardware configuration:

    • Processor: Intel Core i5 or equivalent
    • Memory: 4 GB RAM
    • Storage: 5 GB available space
    • An internet connection

     

    Software:

    • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit, Linux (Ubuntu, Debian, Red Hat, or Suse), or the latest version of OS X
    • R (3.0.0 or more recent, available for free at https://cran.r-project.org/)
      Datoer
      Date on Request

    Follow Up Courses

    Filtrer
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 4 Dager
      Date on Request
      Price on Request
      Book Now
    • 2 Dager
      Date on Request
      Price on Request
      Book Now
    • 3 Dager
      Date on Request
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.