Formazione Cisco

Insoft Services è uno dei pochi fornitori di formazione in EMEAR a offrire una gamma completa di certificazione Cisco e formazione tecnologica specializzata.

Dettagli

Certificazioni Cisco

Sperimenta un approccio di apprendimento misto che combina il meglio della formazione con istruttore e dell'e-learning autogestito per aiutarti a prepararti per l'esame di certificazione.

Dettagli

Cisco Learning Credits

I Cisco Learning Credits (CLC) sono voucher di formazione prepagati riscattati direttamente con Cisco che semplificano la pianificazione del successo durante l'acquisto di prodotti e servizi Cisco.

Dettagli

Formazione Continua

The Cisco Continuing Education Program offers all active certification holders flexible options to recertify by completing a variety of eligible training items.

Dettagli

Cisco Digital Learning

Certified employees are VALUED assets. Explore Cisco official Digital Learning Library to educate yourself through recorded sessions.

Dettagli

Cisco Business Enablement

The Cisco Business Enablement Partner Program focuses on sharpening the business skills of Cisco Channel Partners and customers.

Dettagli

Catalogo Cisco

Dettagli

Certificazioni Fortinet

Il programma Fortinet Network Security Expert (NSE) è un programma di formazione e certificazione di otto livelli per insegnare agli ingegneri la sicurezza della loro rete per le competenze e l'esperienza di Fortinet FW.

Dettagli

Corsi di formazione tecnica

Insoft è riconosciuto come Fortinet Authorized Training Center in sedi selezionate in tutta l'EMEA.

Corsi tecnici

Catalogo Fortinet

Esplora un'ampia varietà di programmi Fortinet in diversi paesi e corsi online.

Dettagli

Stato ATC

Controlla il nostro stato ATC in tutti i paesi selezionati in Europa.

Dettagli

Fortinet Servizi Professionale

Il team riconosciuto a livello globale di esperti certificati ti aiuta a fare una transizione più fluida con i nostri pacchetti di consulenza, installazione e migrazione predefiniti per una vasta gamma di prodotti Fortinet.

Dettagli

Catalogo Microsoft

Insoft Services fornisce formazione Microsoft in EMEAR. Offriamo corsi di formazione tecnica e certificazione Microsoft guidati da istruttori di livello mondiale.

Corsi tecnici

Corsi di formazione

Impara conoscenze e abilità eccezionali di Extreme Networks.Find all the Extreme Networks online and instructor led class room based calendar here.

Corsi tecnici

Certificazioni Extreme

Forniamo un curriculum completo di competenze tecniche sul conseguimento della certificazione.

Dettagli

Catalogo Extreme

Dettagli

Accreditamento ATP

In qualità di partner di formazione autorizzato (ATP), Insoft Services garantisce che tu riceva i più alti standard di istruzione disponibili.

Dettagli

Pacchetti di consulenza

Forniamo un supporto innovativo e avanzato per la progettazione, l'implementazione e l'ottimizzazione delle soluzioni IT.La nostra base di clienti comprende alcune delle più grandi telco a livello globale.

Soluzioni & Servizi

Il team riconosciuto a livello globale di esperti certificati ti aiuta a fare una transizione più fluida con i nostri pacchetti di consulenza, installazione e migrazione predefiniti per una vasta gamma di prodotti Fortinet.

Chi siamo

Insoft fornisce servizi di formazione e consulenza autorizzati per fornitori IP selezionati.Scopri come stiamo rivoluzionando il settore.

Dettagli
  • +39 02 8704 5199
  • Developing Generative AI Applications on AWS

    Duration
    2 Giorni
    Delivery
    (Online e in loco)
    Price
    Prezzo su richiesta

    This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

     

    • Course level: Advanced

    In this course, you will learn to:

    • Describe generative AI and how it aligns to machine learning
    • Define the importance of generative AI and explain its potential risks and benefits
    • Identify business value from generative AI use cases
    • Discuss the technical foundations and key terminology for generative AI
    • Explain the steps for planning a generative AI project
    • Identify some of the risks and mitigations when using generative AI
    • Understand how Amazon Bedrock works
    • Familiarize yourself with basic concepts of Amazon Bedrock
    • Recognize the benefits of Amazon Bedrock
    • List typical use cases for Amazon Bedrock
    • Describe the typical architecture associated with an Amazon Bedrock solution
    • Understand the cost structure of Amazon Bedrock
    • Implement a demonstration of Amazon Bedrock in the AWS Management Console
    • Define prompt engineering and apply general best practices when interacting with FMs
    • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
    • Apply advanced prompt techniques when necessary for your use case
    • Identify which prompt-techniques are best-suited for specific models
    • Identify potential prompt misuses
    • Analyze potential bias in FM responses and design prompts that mitigate that bias
    • Identify the components of a generative AI application and how to customize a foundation model (FM)
    • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
    • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
    • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
    • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
    • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

    Day 1

     

    Module 1: Introduction to Generative AI – Art of the Possible

    • Overview of ML
    • Basics of generative AI
    • Generative AI use cases
    • Generative AI in practice
    • Risks and benefits

    Module 2: Planning a Generative AI Project

    • Generative AI fundamentals
    • Generative AI in practice
    • Generative AI context
    • Steps in planning a generative AI project
    • Risks and mitigation

    Module 3: Getting Started with Amazon Bedrock

    • Introduction to Amazon Bedrock
    • Architecture and use cases
    • How to use Amazon Bedrock
    • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

    Module 4: Foundations of Prompt Engineering

    • Basics of foundation models
    • Fundamentals of prompt engineering
    • Basic prompt techniques
    • Advanced prompt techniques
    • Demonstration: Fine-Tuning a Basic Text Prompt
    • Model-specific prompt techniques
    • Addressing prompt misuses
    • Mitigating bias
    • Demonstration: Image Bias-Mitigation

     

    Day 2

     

    Module 5: Amazon Bedrock Application Components

    • Applications and use cases
    • Overview of generative AI application components
    • Foundation models and the FM interface
    • Working with datasets and embeddings
    • Demonstration: Word Embeddings
    • Additional application components
    • RAG
    • Model fine-tuning
    • Securing generative AI applications
    • Generative AI application architecture

    Module 6: Amazon Bedrock Foundation Models

    • Introduction to Amazon Bedrock foundation models
    • Using Amazon Bedrock FMs for inference
    • Amazon Bedrock methods
    • Data protection and auditability
    • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

    Module 7: LangChain

    • Optimizing LLM performance
    • Integrating AWS and LangChain
    • Using models with LangChain
    • Constructing prompts
    • Structuring documents with indexes
    • Storing and retrieving data with memory
    • Using chains to sequence components
    • Managing external resources with LangChain agents

    Module 8: Architecture Patterns

    • Introduction to architecture patterns
    • Text summarization
    • Lab: Using Amazon Titan Text Premier to summarize text of small files
    • Lab: Summarize long texts with Amazon Titan
    • Question answering
    • Lab: Using Amazon Bedrock for question answering
    • Chatbots
    • Lab: Build a chatbot
    • Code generation
    • Lab: Using Amazon Bedrock Models for Code Generation
    • LangChain and agents for Amazon Bedrock
    • Lab: Building conversational applications with the Converse API

    This course is intended for:

    • Software developers interested in leveraging large language models without fine-tuning

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Intermediate-level proficiency in Python

    This course is designed to introduce generative AI to software developers interested in leveraging large language models without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

     

    • Course level: Advanced

    In this course, you will learn to:

    • Describe generative AI and how it aligns to machine learning
    • Define the importance of generative AI and explain its potential risks and benefits
    • Identify business value from generative AI use cases
    • Discuss the technical foundations and key terminology for generative AI
    • Explain the steps for planning a generative AI project
    • Identify some of the risks and mitigations when using generative AI
    • Understand how Amazon Bedrock works
    • Familiarize yourself with basic concepts of Amazon Bedrock
    • Recognize the benefits of Amazon Bedrock
    • List typical use cases for Amazon Bedrock
    • Describe the typical architecture associated with an Amazon Bedrock solution
    • Understand the cost structure of Amazon Bedrock
    • Implement a demonstration of Amazon Bedrock in the AWS Management Console
    • Define prompt engineering and apply general best practices when interacting with FMs
    • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
    • Apply advanced prompt techniques when necessary for your use case
    • Identify which prompt-techniques are best-suited for specific models
    • Identify potential prompt misuses
    • Analyze potential bias in FM responses and design prompts that mitigate that bias
    • Identify the components of a generative AI application and how to customize a foundation model (FM)
    • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
    • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
    • Describe how to integrate LangChain with large language models (LLMs), prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
    • Describe architecture patterns that can be implemented with Amazon Bedrock for building generative AI applications
    • Apply the concepts to build and test sample use cases that leverage the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

    Day 1

     

    Module 1: Introduction to Generative AI – Art of the Possible

    • Overview of ML
    • Basics of generative AI
    • Generative AI use cases
    • Generative AI in practice
    • Risks and benefits

    Module 2: Planning a Generative AI Project

    • Generative AI fundamentals
    • Generative AI in practice
    • Generative AI context
    • Steps in planning a generative AI project
    • Risks and mitigation

    Module 3: Getting Started with Amazon Bedrock

    • Introduction to Amazon Bedrock
    • Architecture and use cases
    • How to use Amazon Bedrock
    • Demonstration: Setting Up Amazon Bedrock Access and Using Playgrounds

    Module 4: Foundations of Prompt Engineering

    • Basics of foundation models
    • Fundamentals of prompt engineering
    • Basic prompt techniques
    • Advanced prompt techniques
    • Demonstration: Fine-Tuning a Basic Text Prompt
    • Model-specific prompt techniques
    • Addressing prompt misuses
    • Mitigating bias
    • Demonstration: Image Bias-Mitigation

     

    Day 2

     

    Module 5: Amazon Bedrock Application Components

    • Applications and use cases
    • Overview of generative AI application components
    • Foundation models and the FM interface
    • Working with datasets and embeddings
    • Demonstration: Word Embeddings
    • Additional application components
    • RAG
    • Model fine-tuning
    • Securing generative AI applications
    • Generative AI application architecture

    Module 6: Amazon Bedrock Foundation Models

    • Introduction to Amazon Bedrock foundation models
    • Using Amazon Bedrock FMs for inference
    • Amazon Bedrock methods
    • Data protection and auditability
    • Lab: Invoke Amazon Bedrock model for text generation using zero-shot prompt

    Module 7: LangChain

    • Optimizing LLM performance
    • Integrating AWS and LangChain
    • Using models with LangChain
    • Constructing prompts
    • Structuring documents with indexes
    • Storing and retrieving data with memory
    • Using chains to sequence components
    • Managing external resources with LangChain agents

    Module 8: Architecture Patterns

    • Introduction to architecture patterns
    • Text summarization
    • Lab: Using Amazon Titan Text Premier to summarize text of small files
    • Lab: Summarize long texts with Amazon Titan
    • Question answering
    • Lab: Using Amazon Bedrock for question answering
    • Chatbots
    • Lab: Build a chatbot
    • Code generation
    • Lab: Using Amazon Bedrock Models for Code Generation
    • LangChain and agents for Amazon Bedrock
    • Lab: Building conversational applications with the Converse API

    This course is intended for:

    • Software developers interested in leveraging large language models without fine-tuning

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Intermediate-level proficiency in Python
      Programma
      Data su richiesta

    Follow Up Courses

    Filtra
    • 2 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 1 Giorno
      Data su richiesta
      Price on Request
      Book Now
    • 1 Giorno
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.