Formazione Cisco

Insoft Services è uno dei pochi fornitori di formazione in EMEAR a offrire una gamma completa di certificazione Cisco e formazione tecnologica specializzata.

Dettagli

Certificazioni Cisco

Sperimenta un approccio di apprendimento misto che combina il meglio della formazione con istruttore e dell'e-learning autogestito per aiutarti a prepararti per l'esame di certificazione.

Dettagli

Cisco Learning Credits

I Cisco Learning Credits (CLC) sono voucher di formazione prepagati riscattati direttamente con Cisco che semplificano la pianificazione del successo durante l'acquisto di prodotti e servizi Cisco.

Dettagli

Formazione Continua

The Cisco Continuing Education Program offers all active certification holders flexible options to recertify by completing a variety of eligible training items.

Dettagli

Cisco Digital Learning

Certified employees are VALUED assets. Explore Cisco official Digital Learning Library to educate yourself through recorded sessions.

Dettagli

Cisco Business Enablement

The Cisco Business Enablement Partner Program focuses on sharpening the business skills of Cisco Channel Partners and customers.

Dettagli

Catalogo Cisco

Dettagli

Certificazioni Fortinet

Il programma Fortinet Network Security Expert (NSE) è un programma di formazione e certificazione di otto livelli per insegnare agli ingegneri la sicurezza della loro rete per le competenze e l'esperienza di Fortinet FW.

Dettagli

Corsi di formazione tecnica

Insoft è riconosciuto come Fortinet Authorized Training Center in sedi selezionate in tutta l'EMEA.

Corsi tecnici

Catalogo Fortinet

Esplora un'ampia varietà di programmi Fortinet in diversi paesi e corsi online.

Dettagli

Stato ATC

Controlla il nostro stato ATC in tutti i paesi selezionati in Europa.

Dettagli

Fortinet Servizi Professionale

Il team riconosciuto a livello globale di esperti certificati ti aiuta a fare una transizione più fluida con i nostri pacchetti di consulenza, installazione e migrazione predefiniti per una vasta gamma di prodotti Fortinet.

Dettagli

Catalogo Microsoft

Insoft Services fornisce formazione Microsoft in EMEAR. Offriamo corsi di formazione tecnica e certificazione Microsoft guidati da istruttori di livello mondiale.

Corsi tecnici

Corsi di formazione

Impara conoscenze e abilità eccezionali di Extreme Networks.Find all the Extreme Networks online and instructor led class room based calendar here.

Corsi tecnici

Certificazioni Extreme

Forniamo un curriculum completo di competenze tecniche sul conseguimento della certificazione.

Dettagli

Catalogo Extreme

Dettagli

Accreditamento ATP

In qualità di partner di formazione autorizzato (ATP), Insoft Services garantisce che tu riceva i più alti standard di istruzione disponibili.

Dettagli

Pacchetti di consulenza

Forniamo un supporto innovativo e avanzato per la progettazione, l'implementazione e l'ottimizzazione delle soluzioni IT.La nostra base di clienti comprende alcune delle più grandi telco a livello globale.

Soluzioni & Servizi

Il team riconosciuto a livello globale di esperti certificati ti aiuta a fare una transizione più fluida con i nostri pacchetti di consulenza, installazione e migrazione predefiniti per una vasta gamma di prodotti Fortinet.

Chi siamo

Insoft fornisce servizi di formazione e consulenza autorizzati per fornitori IP selezionati.Scopri come stiamo rivoluzionando il settore.

Dettagli
  • +39 02 8704 5199
  • Data Science for Marketing Analytics

    Duration
    3 Giorni
    Delivery
    (Online e in loco)
    Price
    Prezzo su richiesta
    The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments. The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modelling customer product choices. By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.  

    Lesson One: Data Preparation and Cleaning

    • Data Models and Structured Data
    • pandas
    • Data Manipulation

    Lesson Two: Data Exploration and Visualization

    • Identifying the Right Attributes
    • Generating Targeted Insights
    • Visualizing Data

    Lesson Three: Unsupervised Learning: Customer Segmentation

    • Customer Segmentation Methods
    • Similarity and Data Standardization
    • k-means Clustering

    Lesson Four: Choosing the Best Segmentation Approach

    • Choosing the Number of Clusters
    • Different Methods of Clustering
    • Evaluating Clustering

    Lesson Five: Predicting Customer Revenue Using Linear Regression

    • Understanding Regression
    • Feature Engineering for Regression
    • Performing and Interpreting Linear Regression

    Lesson Six: Other Regression Techniques and Tools for Evaluation

    • Evaluating the Accuracy of a Regression Model
    • Using Regularization for Feature Selection
    • Tree-Based Regression Models

    Lesson Seven: Supervised Learning: Predicting Customer Churn

    • Classification Problems
    • Understanding Logistic Regression
    • Creating a Data Science Pipeline

    Lesson Eight: Fine-Tuning Classification Algorithms

    • Support Vector Machine
    • Decision Trees
    • Random Forest
    • Preprocessing Data for Machine Learning Models
    • Model Evaluation
    • Performance Metrics

    Lesson Nine: Modeling Customer Choice

    • Understanding Multiclass Classification
    • Class Imbalanced Data

    Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.

    It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.

     

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Dual Core or better
    • Memory: 4 GB RAM
    • Storage: 10 GB available space

     

    Software:

    You’ll also need the following software installed in advance:

    • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
    • Browser: Google Chrome or Mozilla Firefox
    • Conda
    • Python 3.x
    The Data Science for Marketing Analytics course, covers every stage of data analytics, from working with a raw dataset to segmenting a population and modelling different parts of the population based on the segments. The course starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modelling customer product choices. By the end of this course, you will be able to build your own marketing reporting and interactive dashboard solutions.  

    Lesson One: Data Preparation and Cleaning

    • Data Models and Structured Data
    • pandas
    • Data Manipulation

    Lesson Two: Data Exploration and Visualization

    • Identifying the Right Attributes
    • Generating Targeted Insights
    • Visualizing Data

    Lesson Three: Unsupervised Learning: Customer Segmentation

    • Customer Segmentation Methods
    • Similarity and Data Standardization
    • k-means Clustering

    Lesson Four: Choosing the Best Segmentation Approach

    • Choosing the Number of Clusters
    • Different Methods of Clustering
    • Evaluating Clustering

    Lesson Five: Predicting Customer Revenue Using Linear Regression

    • Understanding Regression
    • Feature Engineering for Regression
    • Performing and Interpreting Linear Regression

    Lesson Six: Other Regression Techniques and Tools for Evaluation

    • Evaluating the Accuracy of a Regression Model
    • Using Regularization for Feature Selection
    • Tree-Based Regression Models

    Lesson Seven: Supervised Learning: Predicting Customer Churn

    • Classification Problems
    • Understanding Logistic Regression
    • Creating a Data Science Pipeline

    Lesson Eight: Fine-Tuning Classification Algorithms

    • Support Vector Machine
    • Decision Trees
    • Random Forest
    • Preprocessing Data for Machine Learning Models
    • Model Evaluation
    • Performance Metrics

    Lesson Nine: Modeling Customer Choice

    • Understanding Multiclass Classification
    • Class Imbalanced Data

    Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts.

    It’ll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.

     

    Hardware:

    For an optimal student experience, we recommend the following hardware configuration:

    • Processor: Dual Core or better
    • Memory: 4 GB RAM
    • Storage: 10 GB available space

     

    Software:

    You’ll also need the following software installed in advance:

    • Any of the following operating systems: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, or Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later.
    • Browser: Google Chrome or Mozilla Firefox
    • Conda
    • Python 3.x
      Programma
      Data su richiesta

    Follow Up Courses

    Filtra
    • 2 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 2 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 4 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 2 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 3 Giorni
      Data su richiesta
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.