Formazione Cisco

Insoft Services è uno dei pochi fornitori di formazione in EMEAR a offrire una gamma completa di certificazione Cisco e formazione tecnologica specializzata.

Dettagli

Certificazioni Cisco

Sperimenta un approccio di apprendimento misto che combina il meglio della formazione con istruttore e dell'e-learning autogestito per aiutarti a prepararti per l'esame di certificazione.

Dettagli

Cisco Learning Credits

I Cisco Learning Credits (CLC) sono voucher di formazione prepagati riscattati direttamente con Cisco che semplificano la pianificazione del successo durante l'acquisto di prodotti e servizi Cisco.

Dettagli

Formazione Continua

The Cisco Continuing Education Program offers all active certification holders flexible options to recertify by completing a variety of eligible training items.

Dettagli

Cisco Digital Learning

Certified employees are VALUED assets. Explore Cisco official Digital Learning Library to educate yourself through recorded sessions.

Dettagli

Cisco Business Enablement

The Cisco Business Enablement Partner Program focuses on sharpening the business skills of Cisco Channel Partners and customers.

Dettagli

Catalogo Cisco

Dettagli

Certificazioni Fortinet

Il programma Fortinet Network Security Expert (NSE) è un programma di formazione e certificazione di otto livelli per insegnare agli ingegneri la sicurezza della loro rete per le competenze e l'esperienza di Fortinet FW.

Dettagli

Corsi di formazione tecnica

Insoft è riconosciuto come Fortinet Authorized Training Center in sedi selezionate in tutta l'EMEA.

Corsi tecnici

Catalogo Fortinet

Esplora un'ampia varietà di programmi Fortinet in diversi paesi e corsi online.

Dettagli

Stato ATC

Controlla il nostro stato ATC in tutti i paesi selezionati in Europa.

Dettagli

Fortinet Servizi Professionale

Il team riconosciuto a livello globale di esperti certificati ti aiuta a fare una transizione più fluida con i nostri pacchetti di consulenza, installazione e migrazione predefiniti per una vasta gamma di prodotti Fortinet.

Dettagli

Catalogo Microsoft

Insoft Services fornisce formazione Microsoft in EMEAR. Offriamo corsi di formazione tecnica e certificazione Microsoft guidati da istruttori di livello mondiale.

Corsi tecnici

Corsi di formazione

Impara conoscenze e abilità eccezionali di Extreme Networks.Find all the Extreme Networks online and instructor led class room based calendar here.

Corsi tecnici

Certificazioni Extreme

Forniamo un curriculum completo di competenze tecniche sul conseguimento della certificazione.

Dettagli

Catalogo Extreme

Dettagli

Accreditamento ATP

In qualità di partner di formazione autorizzato (ATP), Insoft Services garantisce che tu riceva i più alti standard di istruzione disponibili.

Dettagli

Pacchetti di consulenza

Forniamo un supporto innovativo e avanzato per la progettazione, l'implementazione e l'ottimizzazione delle soluzioni IT.La nostra base di clienti comprende alcune delle più grandi telco a livello globale.

Soluzioni & Servizi

Il team riconosciuto a livello globale di esperti certificati ti aiuta a fare una transizione più fluida con i nostri pacchetti di consulenza, installazione e migrazione predefiniti per una vasta gamma di prodotti Fortinet.

Chi siamo

Insoft fornisce servizi di formazione e consulenza autorizzati per fornitori IP selezionati.Scopri come stiamo rivoluzionando il settore.

Dettagli
  • +39 02 8704 5199
  • CAIP - Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

    Duration
    5 Giorni
    Delivery
    (Online e in loco)
    Price
    Prezzo su richiesta

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced
      Programma
      Data su richiesta

    Follow Up Courses

    Filtra
    • 5 Giorni
      Data su richiesta
      Price on Request
      Book Now
    • 1 Giorno
      Data su richiesta
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.