Cisco-Ausbildung

Insoft Services ist einer der wenigen Schulungsanbieter in EMEAR, der ein umfassendes Angebot an Cisco-Zertifizierungen und spezialisierten Technologieschulungen anbietet.

Lesen Sie mehr

Cisco Zertifizierungen

Erleben Sie einen Blended-Learning-Ansatz, der das Beste aus von Lehrern geleiteten Schulungen und E-Learning zum Selbststudium kombiniert, um sich auf Ihre Zertifizierungsprüfung vorzubereiten.

Lesen Sie mehr

Cisco Learning Credits

Cisco Learning Credits (CLCs) sind Prepaid-Schulungsgutscheine, die direkt bei Cisco eingelöst werden und die Planung für Ihren Erfolg beim Kauf von Cisco-Produkten und -Services erleichtern.

Lösen Sie Ihre CLCs ein

Cisco Continuing Education

Das Cisco Continuing Education Program bietet allen aktiven Zertifizierungsinhabern flexible Optionen zur Rezertifizierung, indem sie eine Vielzahl von in Frage kommenden Schulungselementen absolvieren.

Lesen Sie mehr

Cisco Digital Learning

Zertifizierte Mitarbeiter sind GESCHÄTZTE Vermögenswerte. Erkunden Sie die offizielle Digital Learning Library von Cisco, um sich durch aufgezeichnete Sitzungen weiterzubilden.

CDLL-Katalog

Cisco Business Enablement

Das Cisco Business Enablement Partner Program konzentriert sich auf die Verbesserung der Geschäftsfähigkeiten von Cisco Channel Partnern und Kunden.

Lesen Sie mehr

Cisco Schulungskatalog

Lesen Sie mehr

Technische Zertifizierung

Das Fortinet Network Security Expert (NSE) -Programm ist ein achtstufiges Schulungs- und Zertifizierungsprogramm, um Ingenieuren ihre Netzwerksicherheit für Fortinet FW-Fähigkeiten und -Erfahrungen beizubringen.

Technische Kurse

Fortinet-Ausbildung

Insoft ist als Fortinet Authorized Training Center an ausgewählten Standorten in EMEA anerkannt.

Lesen Sie mehr

Fortinet Schulungskatalog

Lesen Sie mehr

ATC Status

Überprüfen Sie unseren ATC-Status in ausgewählten Ländern in Europa.

Lesen Sie mehr

Fortinet Service-Pakete

Insoft Services hat eine spezielle Lösung entwickelt, um den Prozess der Installation oder Migration zu Fortinet-Produkten zu rationalisieren und zu vereinfachen.

Lesen Sie mehr

Microsoft-Ausbildung

Insoft Services bietet Microsoft-Schulungen in EMEAR an. Wir bieten technische Schulungen und Zertifizierungskurse von Microsoft an, die von erstklassigen Instruktoren geleitet werden.

Technische Kurse

Extreme-Ausbildung

Erfahren Sie außergewöhnliche Kenntnisse und Fähigkeiten von Extreme Networks.

Technische Kurse

Technische Zertifizierung

Wir bieten einen umfassenden Lehrplan für technische Kompetenzen zur Zertifizierung an.

Lesen Sie mehr

Extreme Schulungskatalog

Hier finden Sie alle Extreme Networks online und den von Lehrern geleiteten Kalender für den Klassenraum.

Lesen Sie mehr

ATP-Akkreditierung

Als autorisierter Schulungspartner (ATP) stellt Insoft Services sicher, dass Sie die höchsten verfügbaren Bildungsstandards erhalten.

Lesen Sie mehr

Lösungen & Dienstleistungen

Wir bieten innovative und fortschrittliche Unterstützung bei der Konzeption, Implementierung und Optimierung von IT-Lösungen. Unsere Kundenbasis umfasst einige der größten Telcos weltweit.

Beratungspakete

Ein weltweit anerkanntes Team von zertifizierten Experten unterstützt Sie bei einem reibungsloseren Übergang mit unseren vordefinierten Beratungs-, Installations- und Migrationspaketen für eine breite Palette von Fortinet-Produkten.

Über uns

Insoft bietet autorisierte Schulungs- und Beratungsdienstleistungen für ausgewählte IP-Anbieter. Erfahren Sie, wie wir die Branche revolutionieren.

Lesen Sie mehr
  • +49 6151 277 6496
  • CAIP - Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

    Duration
    5 Tage
    Delivery
    (Online Und Vor Ort)
    Price
    Preis auf Anfrage

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced
      Termine
      Datum auf Anfrage

    Follow Up Courses

    Filter
    • 5 Tage
      Datum auf Anfrage
      Price on Request
      Book Now
    • 1 Tag
      Datum auf Anfrage
      Price on Request
      Book Now
    • 5 Tage
      Datum auf Anfrage
      Price on Request
      Book Now
    • 1 Tag
      Datum auf Anfrage
      Price on Request
      Book Now
    • 3 Tage
      Datum auf Anfrage
      Price on Request
      Book Now
    • 3 Tage
      Datum auf Anfrage
      Price on Request
      Book Now
    • 1 Tag
      Datum auf Anfrage
      Price on Request
      Book Now
    • 1 Tag
      Datum auf Anfrage
      Price on Request
      Book Now
    • 1 Tag
      Datum auf Anfrage
      Price on Request
      Book Now
    • 3 Tage
      Datum auf Anfrage
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.