Cisco træning

Insoft Services er en af de få uddannelsesudbydere i EMEAR, der tilbyder hele spektret af Cisco-certificering og specialiseret teknologiuddannelse.

Lær hvordan

Cisco-certificeringer

Oplev en blandet læringsmetode, der kombinerer det bedste fra instruktørstyret træning og e-læring i eget tempo for at hjælpe dig med at forberede dig til din certificeringseksamen.

Lær hvordan

Cisco Learning Credits

Cisco Learning Credits (CLCs) er forudbetalte træningskuponer, der indløses direkte med Cisco, og som gør det nemmere at planlægge din succes, når du køber Cisco-produkter og -tjenester.

Lær hvordan

Cisco Efteruddannelse

Cisco Continuing Education Program tilbyder alle aktive certificeringsindehavere fleksible muligheder for at gencertificere ved at gennemføre en række kvalificerede træningselementer.

Lær hvordan

Cisco Digital Learning

Certificerede medarbejdere er VÆRDSATTE aktiver. Udforsk Ciscos officielle digitale læringsbibliotek for at uddanne dig selv gennem optagede sessioner.

Lær hvordan

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på at skærpe Cisco Channel Partners og kunders forretningsmæssige færdigheder.

Lær hvordan

Cisco kursuskatalog

Lær hvordan

Fortinet-certificeringer

Fortinet Network Security Expert (NSE) -programmet er et otte-niveau uddannelses- og certificeringsprogram for at undervise ingeniører i deres netværkssikkerhed for Fortinet FW-færdigheder og erfaring.

Lær hvordan

Fortinet træning

Insoft er anerkendt som Autoriseret Fortinet Training Center på udvalgte steder på tværs af EMEA.

Tekniske kurser

Fortinet kursuskatalog

Udforsk hele Fortinet-træningskataloget. Programmet omfatter en bred vifte af selvstændige og instruktørledede kurser.

Lær hvordan

ATC-status

Tjek vores ATC-status på tværs af udvalgte lande i Europa.

Lær hvordan

Fortinet Professionelle Services

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Lær hvordan

Microsoft træning

Insoft Services tilbyder Microsoft-undervisning i EMEAR. Vi tilbyder Microsoft tekniske kurser og certificeringskurser, der ledes af instruktører i verdensklasse.

Tekniske kurser

Extreme træning

Find all the Extreme Networks online and instructor led class room based calendar here.

Tekniske kurser

Tekniske certificeringer

Vi leverer omfattende læseplan for tekniske kompetencefærdigheder på certificeringspræstationen.

Lær hvordan

Extreme kursuskatalog

Lær hvordan

ATP-akkreditering

Som autoriseret uddannelsespartner (ATP) sikrer Insoft Services, at du får de højeste uddannelsesstandarder, der findes.

Lær hvordan

Løsninger og tjenester

Vi leverer innovativ og avanceret support til design, implementering og optimering af IT-løsninger. Vores kundebase omfatter nogle af de største Telcos globalt.

Lær hvordan

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Om os

Insoft tilbyder autoriseret uddannelses- og konsulentbistand til udvalgte IP-leverandører. Få mere at vide om, hvordan vi revolutionerer branchen.

Lær hvordan
  • +45 32 70 99 90
  • Practical Data Science with Amazon SageMaker

    Duration
    1 Dag
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørgsel

    Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Discuss the benefits of different types of machine learning for solving business problems
    • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
    • Explain how data scientists use AWS tools and ML to solve a common business problem
    • Summarize the steps a data scientist takes to prepare data
    • Summarize the steps a data scientist takes to train ML models
    • Summarize the steps a data scientist takes to evaluate and tune ML models
    • Summarize the steps to deploy a model to an endpoint and generate predictions
    • Describe the challenges for operationalizing ML models
    • Match AWS tools with their ML function

    Module 1: Introduction to Machine Learning

    • Benefits of machine learning (ML)
    • Types of ML approaches
    • Framing the business problem
    • Prediction quality
    • Processes, roles, and responsibilities for ML projects

    Module 2: Preparing a Dataset

    • Data analysis and preparation
    • Data preparation tools
    • Demonstration: Review Amazon SageMaker Studio and Notebooks
    • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

    Module 3: Training a Model

    • Steps to train a model
    • Choose an algorithm
    • Train the model in Amazon SageMaker
    • Hands-On Lab: Training a Model with Amazon SageMaker
    • Amazon CodeWhisperer
    • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

    Module 4: Evaluating and Tuning a Model

    • Model evaluation
    • Model tuning and hyperparameter optimization
    • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

    Module 5: Deploying a Model

    • Model deployment
    • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

    Module 6: Operational Challenges

    • Responsible ML
    • ML team and MLOps
    • Automation
    • Monitoring
    • Updating models (model testing and deployment)

    Module 7: Other Model-Building Tools

    • Different tools for different skills and business needs
    • No-code ML with Amazon SageMaker Canvas
    • Demonstration: Overview of Amazon SageMaker Canvas
    • Amazon SageMaker Studio Lab
    • Demonstration: Overview of SageMaker Studio Lab
    • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

    This course is intended for:

    • Development Operations (DevOps) engineers
    • Application developers

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Entry-level knowledge of Python programming
    • Entry-level knowledge of statistics

    Artificial intelligence and machine learning (AI/ML) are becoming mainstream. In this course, you will spend a day in the life of a data scientist so that you can collaborate efficiently with data scientists and build applications that integrate with ML. You will learn the basic process data scientists use to develop ML solutions on Amazon Web Services (AWS) with Amazon SageMaker. You will experience the steps to build, train, and deploy an ML model through instructor-led demonstrations and labs.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Discuss the benefits of different types of machine learning for solving business problems
    • Describe the typical processes, roles, and responsibilities on a team that builds and deploys ML systems
    • Explain how data scientists use AWS tools and ML to solve a common business problem
    • Summarize the steps a data scientist takes to prepare data
    • Summarize the steps a data scientist takes to train ML models
    • Summarize the steps a data scientist takes to evaluate and tune ML models
    • Summarize the steps to deploy a model to an endpoint and generate predictions
    • Describe the challenges for operationalizing ML models
    • Match AWS tools with their ML function

    Module 1: Introduction to Machine Learning

    • Benefits of machine learning (ML)
    • Types of ML approaches
    • Framing the business problem
    • Prediction quality
    • Processes, roles, and responsibilities for ML projects

    Module 2: Preparing a Dataset

    • Data analysis and preparation
    • Data preparation tools
    • Demonstration: Review Amazon SageMaker Studio and Notebooks
    • Hands-On Lab: Data Preparation with SageMaker Data Wrangler

    Module 3: Training a Model

    • Steps to train a model
    • Choose an algorithm
    • Train the model in Amazon SageMaker
    • Hands-On Lab: Training a Model with Amazon SageMaker
    • Amazon CodeWhisperer
    • Demonstration: Amazon CodeWhisperer in SageMaker Studio Notebooks

    Module 4: Evaluating and Tuning a Model

    • Model evaluation
    • Model tuning and hyperparameter optimization
    • Hands-On Lab: Model Tuning and Hyperparameter Optimization with Amazon SageMaker

    Module 5: Deploying a Model

    • Model deployment
    • Hands-On Lab: Deploy a Model to a Real-Time Endpoint and Generate a Prediction

    Module 6: Operational Challenges

    • Responsible ML
    • ML team and MLOps
    • Automation
    • Monitoring
    • Updating models (model testing and deployment)

    Module 7: Other Model-Building Tools

    • Different tools for different skills and business needs
    • No-code ML with Amazon SageMaker Canvas
    • Demonstration: Overview of Amazon SageMaker Canvas
    • Amazon SageMaker Studio Lab
    • Demonstration: Overview of SageMaker Studio Lab
    • (Optional) Hands-On Lab: Integrating a Web Application with an Amazon SageMaker Model Endpoint

    This course is intended for:

    • Development Operations (DevOps) engineers
    • Application developers

    We recommend that attendees of this course have:

    • AWS Technical Essentials
    • Entry-level knowledge of Python programming
    • Entry-level knowledge of statistics
      Kommende datoer
      Dato på anmodning

    Follow Up Courses

    Filtrer
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.