Cisco træning

Insoft Services er en af de få uddannelsesudbydere i EMEAR, der tilbyder hele spektret af Cisco-certificering og specialiseret teknologiuddannelse.

Lær hvordan

Cisco-certificeringer

Oplev en blandet læringsmetode, der kombinerer det bedste fra instruktørstyret træning og e-læring i eget tempo for at hjælpe dig med at forberede dig til din certificeringseksamen.

Lær hvordan

Cisco Learning Credits

Cisco Learning Credits (CLCs) er forudbetalte træningskuponer, der indløses direkte med Cisco, og som gør det nemmere at planlægge din succes, når du køber Cisco-produkter og -tjenester.

Lær hvordan

Cisco Efteruddannelse

Cisco Continuing Education Program tilbyder alle aktive certificeringsindehavere fleksible muligheder for at gencertificere ved at gennemføre en række kvalificerede træningselementer.

Lær hvordan

Cisco Digital Learning

Certificerede medarbejdere er VÆRDSATTE aktiver. Udforsk Ciscos officielle digitale læringsbibliotek for at uddanne dig selv gennem optagede sessioner.

Lær hvordan

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på at skærpe Cisco Channel Partners og kunders forretningsmæssige færdigheder.

Lær hvordan

Cisco kursuskatalog

Lær hvordan

Fortinet-certificeringer

Fortinet Network Security Expert (NSE) -programmet er et otte-niveau uddannelses- og certificeringsprogram for at undervise ingeniører i deres netværkssikkerhed for Fortinet FW-færdigheder og erfaring.

Lær hvordan

Fortinet træning

Insoft er anerkendt som Autoriseret Fortinet Training Center på udvalgte steder på tværs af EMEA.

Tekniske kurser

Fortinet kursuskatalog

Udforsk hele Fortinet-træningskataloget. Programmet omfatter en bred vifte af selvstændige og instruktørledede kurser.

Lær hvordan

ATC-status

Tjek vores ATC-status på tværs af udvalgte lande i Europa.

Lær hvordan

Fortinet Professionelle Services

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Lær hvordan

Microsoft træning

Insoft Services tilbyder Microsoft-undervisning i EMEAR. Vi tilbyder Microsoft tekniske kurser og certificeringskurser, der ledes af instruktører i verdensklasse.

Tekniske kurser

Extreme træning

Find all the Extreme Networks online and instructor led class room based calendar here.

Tekniske kurser

Tekniske certificeringer

Vi leverer omfattende læseplan for tekniske kompetencefærdigheder på certificeringspræstationen.

Lær hvordan

Extreme kursuskatalog

Lær hvordan

ATP-akkreditering

Som autoriseret uddannelsespartner (ATP) sikrer Insoft Services, at du får de højeste uddannelsesstandarder, der findes.

Lær hvordan

Løsninger og tjenester

Vi leverer innovativ og avanceret support til design, implementering og optimering af IT-løsninger. Vores kundebase omfatter nogle af de største Telcos globalt.

Lær hvordan

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Om os

Insoft tilbyder autoriseret uddannelses- og konsulentbistand til udvalgte IP-leverandører. Få mere at vide om, hvordan vi revolutionerer branchen.

Lær hvordan
  • +45 32 70 99 90
  • MLOps Engineering on AWS

    Duration
    3 Dage
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørgsel

    This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Explain the benefits of MLOps
    • Compare and contrast DevOps and MLOps
    • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
    • Set up experimentation environments for MLOps with Amazon SageMaker
    • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
    • Describe three options for creating a full CI/CD pipeline in an ML context
    • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
    • Demonstrate how to monitor ML based solutions
    • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

    Day 1

     

    Module 1: Introduction to MLOps

    • Processes
    • People
    • Technology
    • Security and governance
    • MLOps maturity model

    Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

    • Bringing MLOps to experimentation
    • Setting up the ML experimentation environment
    • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
    • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
    • Workbook: Initial MLOps

    Module 3: Repeatable MLOps: Repositories

    • Managing data for MLOps
    • Version control of ML models
    • Code repositories in ML

     

    Module 4: Repeatable MLOps: Orchestration

    • ML pipelines
    • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

     

    Day 2

     

    Module 4: Repeatable MLOps: Orchestration (continued)

    • End-to-end orchestration with AWS Step Functions
    • Hands-On Lab: Automating a Workflow with Step Functions
    • End-to-end orchestration with SageMaker Projects
    • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
    • Using third-party tools for repeatability
    • Demonstration: Exploring Human-in-the-Loop During Inference
    • Governance and security
    • Demonstration: Exploring Security Best Practices for SageMaker
    • Workbook: Repeatable MLOps

    Module 5: Reliable MLOps: Scaling and Testing

    • Scaling and multi-account strategies
    • Testing and traffic-shifting
    • Demonstration: Using SageMaker Inference Recommender
    • Hands-On Lab: Testing Model Variants

     

    Day 3

     

    Module 5: Reliable MLOps: Scaling and Testing (continued)

    • Hands-On Lab: Shifting Traffic
    • Workbook: Multi-account strategies

    Module 6: Reliable MLOps: Monitoring

    • The importance of monitoring in ML
    • Hands-On Lab: Monitoring a Model for Data Drift
    • Operations considerations for model monitoring
    • Remediating problems identified by monitoring ML solutions
    • Workbook: Reliable MLOps
    • Hands-On Lab: Building and Troubleshooting an ML Pipeline

    This course is intended for:

    • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
    • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

    We recommend that attendees of this course have:

    • AWS Technical Essentials (classroom or digital)
    • DevOps Engineering on AWS, or equivalent experience
    • Practical Data Science with Amazon SageMaker, or equivalent experience

    This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

     

    • Course level: Intermediate

    In this course, you will learn to:

    • Explain the benefits of MLOps
    • Compare and contrast DevOps and MLOps
    • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
    • Set up experimentation environments for MLOps with Amazon SageMaker
    • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
    • Describe three options for creating a full CI/CD pipeline in an ML context
    • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
    • Demonstrate how to monitor ML based solutions
    • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

    Day 1

     

    Module 1: Introduction to MLOps

    • Processes
    • People
    • Technology
    • Security and governance
    • MLOps maturity model

    Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

    • Bringing MLOps to experimentation
    • Setting up the ML experimentation environment
    • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
    • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
    • Workbook: Initial MLOps

    Module 3: Repeatable MLOps: Repositories

    • Managing data for MLOps
    • Version control of ML models
    • Code repositories in ML

     

    Module 4: Repeatable MLOps: Orchestration

    • ML pipelines
    • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

     

    Day 2

     

    Module 4: Repeatable MLOps: Orchestration (continued)

    • End-to-end orchestration with AWS Step Functions
    • Hands-On Lab: Automating a Workflow with Step Functions
    • End-to-end orchestration with SageMaker Projects
    • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
    • Using third-party tools for repeatability
    • Demonstration: Exploring Human-in-the-Loop During Inference
    • Governance and security
    • Demonstration: Exploring Security Best Practices for SageMaker
    • Workbook: Repeatable MLOps

    Module 5: Reliable MLOps: Scaling and Testing

    • Scaling and multi-account strategies
    • Testing and traffic-shifting
    • Demonstration: Using SageMaker Inference Recommender
    • Hands-On Lab: Testing Model Variants

     

    Day 3

     

    Module 5: Reliable MLOps: Scaling and Testing (continued)

    • Hands-On Lab: Shifting Traffic
    • Workbook: Multi-account strategies

    Module 6: Reliable MLOps: Monitoring

    • The importance of monitoring in ML
    • Hands-On Lab: Monitoring a Model for Data Drift
    • Operations considerations for model monitoring
    • Remediating problems identified by monitoring ML solutions
    • Workbook: Reliable MLOps
    • Hands-On Lab: Building and Troubleshooting an ML Pipeline

    This course is intended for:

    • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
    • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

    We recommend that attendees of this course have:

    • AWS Technical Essentials (classroom or digital)
    • DevOps Engineering on AWS, or equivalent experience
    • Practical Data Science with Amazon SageMaker, or equivalent experience
      Kommende datoer
      Dato på anmodning

    Follow Up Courses

    Filtrer
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.