Cisco træning

Insoft Services er en af de få uddannelsesudbydere i EMEAR, der tilbyder hele spektret af Cisco-certificering og specialiseret teknologiuddannelse.

Lær hvordan

Cisco-certificeringer

Oplev en blandet læringsmetode, der kombinerer det bedste fra instruktørstyret træning og e-læring i eget tempo for at hjælpe dig med at forberede dig til din certificeringseksamen.

Lær hvordan

Cisco Learning Credits

Cisco Learning Credits (CLCs) er forudbetalte træningskuponer, der indløses direkte med Cisco, og som gør det nemmere at planlægge din succes, når du køber Cisco-produkter og -tjenester.

Lær hvordan

Cisco Efteruddannelse

Cisco Continuing Education Program tilbyder alle aktive certificeringsindehavere fleksible muligheder for at gencertificere ved at gennemføre en række kvalificerede træningselementer.

Lær hvordan

Cisco Digital Learning

Certificerede medarbejdere er VÆRDSATTE aktiver. Udforsk Ciscos officielle digitale læringsbibliotek for at uddanne dig selv gennem optagede sessioner.

Lær hvordan

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på at skærpe Cisco Channel Partners og kunders forretningsmæssige færdigheder.

Lær hvordan

Cisco kursuskatalog

Lær hvordan

Fortinet-certificeringer

Fortinet Network Security Expert (NSE) -programmet er et otte-niveau uddannelses- og certificeringsprogram for at undervise ingeniører i deres netværkssikkerhed for Fortinet FW-færdigheder og erfaring.

Lær hvordan

Fortinet træning

Insoft er anerkendt som Autoriseret Fortinet Training Center på udvalgte steder på tværs af EMEA.

Tekniske kurser

Fortinet kursuskatalog

Udforsk hele Fortinet-træningskataloget. Programmet omfatter en bred vifte af selvstændige og instruktørledede kurser.

Lær hvordan

ATC-status

Tjek vores ATC-status på tværs af udvalgte lande i Europa.

Lær hvordan

Fortinet Professionelle Services

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Lær hvordan

Microsoft træning

Insoft Services tilbyder Microsoft-undervisning i EMEAR. Vi tilbyder Microsoft tekniske kurser og certificeringskurser, der ledes af instruktører i verdensklasse.

Tekniske kurser

Extreme træning

Find all the Extreme Networks online and instructor led class room based calendar here.

Tekniske kurser

Tekniske certificeringer

Vi leverer omfattende læseplan for tekniske kompetencefærdigheder på certificeringspræstationen.

Lær hvordan

Extreme kursuskatalog

Lær hvordan

ATP-akkreditering

Som autoriseret uddannelsespartner (ATP) sikrer Insoft Services, at du får de højeste uddannelsesstandarder, der findes.

Lær hvordan

Løsninger og tjenester

Vi leverer innovativ og avanceret support til design, implementering og optimering af IT-løsninger. Vores kundebase omfatter nogle af de største Telcos globalt.

Lær hvordan

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Om os

Insoft tilbyder autoriseret uddannelses- og konsulentbistand til udvalgte IP-leverandører. Få mere at vide om, hvordan vi revolutionerer branchen.

Lær hvordan
  • +45 32 70 99 90
  • CAIP - Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

    Duration
    5 Dage
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørgsel

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced

    Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

    • Specify a general approach to solve a given business problem that uses applied AI and ML.
    • Collect and refine a dataset to prepare it for training and testing.
    • Train and tune a machine learning model.
    • Finalize a machine learning model and present the results to the appropriate audience.
    • Build linear regression models.
    • Build classification models.
    • Build clustering models.
    • Build decision trees and random forests.
    • Build support-vector machines (SVMs).
    • Build artificial neural networks (ANNs).
    • Promote data privacy and ethical practices within AI and ML projects.

    Lesson 1: Solving Business Problems Using AI and ML

    • Topic A: Identify AI and ML Solutions for Business Problems
    • Topic C: Formulate a Machine Learning Problem
    • Topic D: Select Appropriate Tools

     

    Lesson 2: Collecting and Refining the Dataset

    • Topic A: Collect the Dataset
    • Topic B: Analyze the Dataset to Gain Insights
    • Topic C: Use Visualizations to Analyze Data
    • Topic D: Prepare Data

     

    Lesson 3: Setting Up and Training a Model

    • Topic A: Set Up a Machine Learning Model
    • Topic B: Train the Model

     

    Lesson 4: Finalizing a Model

    • Topic A: Translate Results into Business Actions
    • Topic B: Incorporate a Model into a Long-Term Business Solution

     

    Lesson 5: Building Linear Regression Models

    • Topic A: Build a Regression Model Using Linear Algebra
    • Topic B: Build a Regularized Regression Model Using Linear Algebra
    • Topic C: Build an Iterative Linear Regression Model

     

    Lesson 6: Building Classification Models

    • Topic A: Train Binary Classification Models
    • Topic B: Train Multi-Class Classification Models
    • Topic C: Evaluate Classification Models
    • Topic D: Tune Classification Models

     

    Lesson 7: Building Clustering Models

    • Topic A: Build k-Means Clustering Models
    • Topic B: Build Hierarchical Clustering Models

     

    Lesson 8: Building Advanced Models

    • Topic A: Build Decision Tree Models
    • Topic B: Build Random Forest Models

     

    Lesson 9: Building Support-Vector Machines

    • Topic A: Build SVM Models for Classification
    • Topic B: Build SVM Models for Regression

     

    Lesson 10: Building Artificial Neural Networks

    • Topic A: Build Multi-Layer Perceptrons (MLP)
    • Topic B: Build Convolutional Neural Networks (CNN)

     

    Lesson 11: Promoting Data Privacy and Ethical Practices

    • Topic A: Protect Data Privacy
    • Topic B: Promote Ethical Practices
    • Topic C: Establish Data Privacy and Ethics Policies

     

    Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

    The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

     

    So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

     

    A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

     

    This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

    To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

     

    You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

    • Database Design: A Modern Approach
    • Python® Programming: Introduction
    • Python® Programming: Advanced
      Kommende datoer
      Dato på anmodning

    Follow Up Courses

    Filtrer
    • 5 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 1 Dag
      Dato på anmodning
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.