Cisco træning

Insoft Services er en af de få uddannelsesudbydere i EMEAR, der tilbyder hele spektret af Cisco-certificering og specialiseret teknologiuddannelse.

Lær hvordan

Cisco-certificeringer

Oplev en blandet læringsmetode, der kombinerer det bedste fra instruktørstyret træning og e-læring i eget tempo for at hjælpe dig med at forberede dig til din certificeringseksamen.

Lær hvordan

Cisco Learning Credits

Cisco Learning Credits (CLCs) er forudbetalte træningskuponer, der indløses direkte med Cisco, og som gør det nemmere at planlægge din succes, når du køber Cisco-produkter og -tjenester.

Lær hvordan

Cisco Efteruddannelse

Cisco Continuing Education Program tilbyder alle aktive certificeringsindehavere fleksible muligheder for at gencertificere ved at gennemføre en række kvalificerede træningselementer.

Lær hvordan

Cisco Digital Learning

Certificerede medarbejdere er VÆRDSATTE aktiver. Udforsk Ciscos officielle digitale læringsbibliotek for at uddanne dig selv gennem optagede sessioner.

Lær hvordan

Cisco Business Enablement

Cisco Business Enablement Partner Program fokuserer på at skærpe Cisco Channel Partners og kunders forretningsmæssige færdigheder.

Lær hvordan

Cisco kursuskatalog

Lær hvordan

Fortinet-certificeringer

Fortinet Network Security Expert (NSE) -programmet er et otte-niveau uddannelses- og certificeringsprogram for at undervise ingeniører i deres netværkssikkerhed for Fortinet FW-færdigheder og erfaring.

Lær hvordan

Fortinet træning

Insoft er anerkendt som Autoriseret Fortinet Training Center på udvalgte steder på tværs af EMEA.

Tekniske kurser

Fortinet kursuskatalog

Udforsk hele Fortinet-træningskataloget. Programmet omfatter en bred vifte af selvstændige og instruktørledede kurser.

Lær hvordan

ATC-status

Tjek vores ATC-status på tværs af udvalgte lande i Europa.

Lær hvordan

Fortinet Professionelle Services

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Lær hvordan

Microsoft træning

Insoft Services tilbyder Microsoft-undervisning i EMEAR. Vi tilbyder Microsoft tekniske kurser og certificeringskurser, der ledes af instruktører i verdensklasse.

Tekniske kurser

Extreme træning

Find all the Extreme Networks online and instructor led class room based calendar here.

Tekniske kurser

Tekniske certificeringer

Vi leverer omfattende læseplan for tekniske kompetencefærdigheder på certificeringspræstationen.

Lær hvordan

Extreme kursuskatalog

Lær hvordan

ATP-akkreditering

Som autoriseret uddannelsespartner (ATP) sikrer Insoft Services, at du får de højeste uddannelsesstandarder, der findes.

Lær hvordan

Løsninger og tjenester

Vi leverer innovativ og avanceret support til design, implementering og optimering af IT-løsninger. Vores kundebase omfatter nogle af de største Telcos globalt.

Lær hvordan

Globalt anerkendte team af certificerede eksperter hjælper dig med at gøre en mere jævn overgang med vores foruddefinerede konsulent-, installations- og migreringspakker til en lang række Fortinet-produkter.

Om os

Insoft tilbyder autoriseret uddannelses- og konsulentbistand til udvalgte IP-leverandører. Få mere at vide om, hvordan vi revolutionerer branchen.

Lær hvordan
  • +45 32 70 99 90
  • Big Data Processing with Apache Spark

    Duration
    2 Dage
    Delivery
    (Online Og På stedet)
    Price
    Pris på forespørgsel
    Processing big data in real-time is challenging due to scalability, information consistency, and fault tolerance. This Big Data Processing with Apache Spark course shows you how you can use Spark to make your overall analysis workflow faster and more efficient. You'll learn all about the core concepts and tools within the Spark ecosystem, like Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming. You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real-time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption. By the end of this course, you will not only have understood how to use machine learning extensions and structured streams but you will also be able to apply Spark in your own upcoming big data projects.  

    After completing this course, you will be able to:

    • Write your own Python programs that can interact with Spark
    • Implement data stream consumption using Apache Spark
    • Recognize common operations in Spark to process known data streams
    • Integrate Spark streaming with Amazon Web Services
    • Create a collaborative filtering model with Python and the movielens dataset
    • Apply processed data streams to Spark machine learning APIs

    Lesson 1: Introduction to Spark Distributed Processing

    • Introduction to Spark and Resilient Distributed Datasets
    • Operations Supported by the RDD API
    • Self-Contained Python Spark Programs
    • Introduction to SQL, Datasets, and DataFrames

    Lesson 2: Introduction to Spark Streaming

    • Streaming Architectures
    • Introduction to Discretized Streams
    • Windowing Operations
    • Introduction to Structured Streaming

    Lesson 3: Spark Streaming Integration with AWS

    • Spark Integration with AWS Services
    • Integrating AWS Kinesis and Python
    • AWS S3 Basic Functionality

    Lesson 4: Spark Streaming, ML, and Windowing Operations

    • Spark Integration with Machine Learning

    Big Data Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended.

    Hardware:

    For an optimal experience with the hands-on labs and other practical activities, we recommend the following hardware configuration:

    • Processor: Intel Core i5 or equivalent
    • Memory: 4GB RAM
    • Storage: 35 GB available space

     

    Software:

    • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit
    • PostgreSQL 9.0 or above
    • Python 3.0 or above
    • Spark 2.3.0
    • Amazon Web Services (AWS) account
    Processing big data in real-time is challenging due to scalability, information consistency, and fault tolerance. This Big Data Processing with Apache Spark course shows you how you can use Spark to make your overall analysis workflow faster and more efficient. You'll learn all about the core concepts and tools within the Spark ecosystem, like Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming. You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real-time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption. By the end of this course, you will not only have understood how to use machine learning extensions and structured streams but you will also be able to apply Spark in your own upcoming big data projects.  

    After completing this course, you will be able to:

    • Write your own Python programs that can interact with Spark
    • Implement data stream consumption using Apache Spark
    • Recognize common operations in Spark to process known data streams
    • Integrate Spark streaming with Amazon Web Services
    • Create a collaborative filtering model with Python and the movielens dataset
    • Apply processed data streams to Spark machine learning APIs

    Lesson 1: Introduction to Spark Distributed Processing

    • Introduction to Spark and Resilient Distributed Datasets
    • Operations Supported by the RDD API
    • Self-Contained Python Spark Programs
    • Introduction to SQL, Datasets, and DataFrames

    Lesson 2: Introduction to Spark Streaming

    • Streaming Architectures
    • Introduction to Discretized Streams
    • Windowing Operations
    • Introduction to Structured Streaming

    Lesson 3: Spark Streaming Integration with AWS

    • Spark Integration with AWS Services
    • Integrating AWS Kinesis and Python
    • AWS S3 Basic Functionality

    Lesson 4: Spark Streaming, ML, and Windowing Operations

    • Spark Integration with Machine Learning

    Big Data Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended.

    Hardware:

    For an optimal experience with the hands-on labs and other practical activities, we recommend the following hardware configuration:

    • Processor: Intel Core i5 or equivalent
    • Memory: 4GB RAM
    • Storage: 35 GB available space

     

    Software:

    • OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit or Windows 10 64-bit
    • PostgreSQL 9.0 or above
    • Python 3.0 or above
    • Spark 2.3.0
    • Amazon Web Services (AWS) account
      Kommende datoer
      Dato på anmodning

    Follow Up Courses

    Filtrer
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 5 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 5 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 3 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 4 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 5 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 5 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 4 Dage
      Dato på anmodning
      Price on Request
      Book Now
    • 2 Dage
      Dato på anmodning
      Price on Request
      Book Now

    Know someone who´d be interested in this course?
    Let them know...

    Use the hashtag #InsoftLearning to talk about this course and find students like you on social media.